Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
EXTRACLANGTOOLS(1)	       Extra Clang Tools	    EXTRACLANGTOOLS(1)

NAME
       extraclangtools - Extra Clang Tools Documentation

       Welcome	to  the	 clang-tools-extra  project which contains extra tools
       built using Clang's tooling APIs.

EXTRA CLANG TOOLS 11.0.0 RELEASE NOTES
        Introduction

        What's	New in Extra Clang Tools 11.0.0?

	  Improvements	to clangd

	    Performance

	    Selecting and targeting

	    Diagnostics

	    Refactorings

	    Code completion

	    Go-to-definition

	    Hover

	    Highlighting

	    Language support

	    System integration

	    Miscellaneous

	  Improvements	to clang-tidy

	    New module

	    New checks

	    New check aliases

	    Changes in	existing checks

	    Renamed checks

	    Other improvements

       Written by the LLVM Team

   Introduction
       This document contains the release notes	for  the  Extra	 Clang	Tools,
       part  of	 the  Clang release 11.0.0. Here we describe the status	of the
       Extra Clang Tools in some detail, including major improvements from the
       previous	release	and new	feature	work. All LLVM releases	may  be	 down-
       loaded from the LLVM releases web site.

       For  more  information about Clang or LLVM, including information about
       the latest release, please see the Clang	Web Site or the	LLVM Web Site.

   What's New in Extra Clang Tools 11.0.0?
       Some of the major new features and improvements to  Extra  Clang	 Tools
       are  listed  here. Generic improvements to Extra	Clang Tools as a whole
       or to its underlying infrastructure are described  first,  followed  by
       tool-specific sections.

   Improvements	to clangd
   Performance
        Eliminated  long delays after adding/removing includes	("async	pream-
	 bles")

        Faster	indexing

        Less memory used to index headers used	by open	 files	("dynamic  in-
	 dex")

        Many  requests	 are  implicitly cancelled rather than queued when the
	 file is edited, preventing a backlog

        Background indexing can be selectively	disabled per-path through con-
	 fig

   Selecting and targeting
        Improved understanding	and selection around  broken  code  ("recovery
	 AST")

        Operations  like "go-to-definition" will target things	on the left of
	 the cursor, if	there is nothing eligible on the right.

        Arguments to assert()-like macros can be properly selected.

   Diagnostics
        When a	header is saved, diagnostics for files that  use  it  are  up-
	 dated.

        Calls	std::make_unique produce diagnostics for the constructor call.
	 (Template functions in	general	are not	expanded for performance  rea-
	 sons).

        Diagnostics  update  more  quickly  for  files	that build quickly (no
	 500ms delay)

        Automatic fixes are offered even when they affect macro arguments.

        Warnings from included	headers	are not	shown (but errors still	are).

        A handful of high-quality clang-tidy checks are enabled by default:

	  readability-misleading-indentation,

	  readability-deleted-default,

	  bugprone-integer-division,

	  bugprone-sizeof-expression,

	  bugprone-suspicious-missing-comma,

	  bugprone-unused-raii,

	  bugprone-unused-return-value,

	  misc-unused-using-decls,

	  misc-unused-alias-decls,

	  misc-definitions-in-headers

   Refactorings
        Rename	applies	across the project, using the index.

        Accuracy of rename improved in	many places.

        New refactoring: add using declaration	for qualified name.

        New refactoring: move function	definition out-of-line.

   Code	completion
        Function call parentheses are not inserted if they already exist.

        Completion of #include	filenames triggers earlier (after <, ",	and /)
	 and is	less aggressive	about replacing	existing text.

        Documentation is reflowed in the same way as on hover.

   Go-to-definition
        Dependent names in templates may be heuristically resolved

        Identifiers in	comments may be	resolved using	other  occurrences  in
	 the file or in	the index.

        Go-to-definition on an	override or final specifier jumps to the over-
	 ridden	method.

   Hover
        Expressions passed as function	arguments show parameter name, conver-
	 sions etc.

        Members  now  include	the access specifier in	the displayed declara-
	 tion.

        Classes and fields show memory	layout information (size and offset).

        Somewhat improved understanding of formatting in  documentation  com-
	 ments.

        Trivial inline	getters/setters	are implicitly documented as such.

   Highlighting
        The  semanticTokens protocol from LSP 3.16 is supported.  (Only token
	 types are exposed, no modifiers yet).

        The non-standard  textDocument/semanticHighlighting  notification  is
	 deprecated and	will be	removed	in clangd 12.

        Placing  the cursor on	a control flow keyword highlights related flow
	 (e.g. break ->	for).

   Language support
        clangd	features now work inside templates on windows.	(MSVC-compati-
	 ble delayed-template-parsing is no longer used).

        Objective-C properties	can be targeted	and cross-references  are  in-
	 dexed.

        Field	names  in designated initializers (C++20) can be targeted, and
	 code completion works in many cases.

        goto labels: go-to-defintion, cross-references, and rename all	work.

        Concepts (C++20): go-to-definition on concept names, and some limited
	 code completion support for concept members.

   System integration
        The project index is  now  written  to	 $PROJECT/.cache/clangd/index.
	 $PROJECT/.clangd is now expected to be	a configuration	file.

	 Old $PROJECT/.clangd directories can safely be	deleted.

	 We  recommend	including  both	 .cache/  and  .clangd/	(with trailing
	 slash)	in .gitignore, for  backward-compatibility  with  earlier  re-
	 leases	of clangd.

        For non-project files (those without a	compilation database), the in-
	 dex location better reflects OS conventions:

	  %LocalAppData%\clangd\index on Windows

	  $(getconf DARWIN_USER_CACHE_DIR)/clangd/index on Mac

	  $XDG_CACHE_HOME/clangd/index	or ~/.cache/clangd/index on others

	 Old ~/.clangd/index directories can safely be deleted.

        clangd	 now  reads  configuration  from  .clangd  files  inside  your
	 project, and from a user configuration	file in	an  OS-specific	 loca-
	 tion:

	  %LocalAppData%\clangd\config.yaml on	Windows

	  ~/Library/Preferences/clangd/config.yaml on Mac

	  $XDG_CONFIG_HOME/clangd/config.yaml or ~/.config/clangd/config.yaml
	   on others

	 See clangd configuration format.

        clangd	 will search for compilation databases (compile_commands.json)
	 in a build/ subdirectory, as well as in the project root.  This  fol-
	 lows  CMake  conventions,  avoiding  the  need	 for a symlink in many
	 cases.

        Compile flags can be selectively modified per-path, using  configura-
	 tion.

        Improved filtering of unhelpful compile flags (such as	those relating
	 to pre-compiled headers).

        Improved detection of standard	library	headers	location.

   Miscellaneous
        Background indexing status is reported	using LSP 3.15 progress	events
	 (window/workDoneProgress/create).

        Infrastructure	 for gathering internal	metrics.  (Off by default, set
	 $CLANGD_METRICS to generate a named CSV file).

        Document versions are now tracked, version is reported	along with di-
	 agnostics.

        Too many stability and	correctness fixes to mention.

   Improvements	to clang-tidy
   New module
        New module llvmlibc.

	 This module contains checks related to	 the  LLVM-libc	 coding	 stan-
	 dards.

   New checks
        New abseil-string-find-str-contains check.

	 Finds	 s.find(...)   ==   string::npos   comparisons	 (for  various
	 string-like types) and	suggests replacing with	absl::StrContains().

        New bugprone-misplaced-pointer-arithmetic-in-alloc check.

	 Finds cases where an integer expression is  added  to	or  subtracted
	 from  the result of a memory allocation function (malloc(), calloc(),
	 realloc(), alloca()) instead of its argument.

        New bugprone-no-escape	check.

	 Finds pointers	with the noescape attribute that are  captured	by  an
	 asynchronously-executed block.

        New bugprone-reserved-identifier check.

	 Checks	 for usages of identifiers reserved for	use by the implementa-
	 tion.

        New bugprone-spuriously-wake-up-functions check.

	 Finds cnd_wait, cnd_timedwait,	wait, wait_for,	or wait_until function
	 calls when the	function is  not  invoked  from	 a  loop  that	checks
	 whether  a  condition predicate holds or the function has a condition
	 parameter.

        New bugprone-suspicious-include check.

	 Finds cases where an include refers to	what appears to	be  an	imple-
	 mentation  file,  which  often	leads to hard-to-track-down ODR	viola-
	 tions,	and diagnoses them.

        New cert-oop57-cpp check.

	 Flags use of the C standard library functions memset, memcpy and mem-
	 cmp and similar derivatives on	non-trivial types.

        New cppcoreguidelines-avoid-non-const-global-variables	check.

	 Finds non-const global	variables as described in  check  I.2  of  C++
	 Core Guidelines.

        New llvmlibc-callee-namespace check.

	 Checks	all calls resolve to functions within __llvm_libc namespace.

        New llvmlibc-implementation-in-namespace check.

	 Checks	all llvm-libc implementation is	within the correct namespace.

        New llvmlibc-restrict-system-libc-headers check.

	 Finds	includes  of  system libc headers not provided by the compiler
	 within	llvm-libc implementations.

        New misc-no-recursion check.

	 Finds recursive functions and diagnoses them.

        New modernize-replace-disallow-copy-and-assign-macro check.

	 Finds macro expansions	of DISALLOW_COPY_AND_ASSIGN and	replaces  them
	 with a	deleted	copy constructor and a deleted assignment operator.

        New objc-dealloc-in-category check.

	 Finds implementations of -dealloc in Objective-C categories.

        New objc-nsinvocation-argument-lifetime check.

	 Finds	calls to NSInvocation methods under ARC	that don't have	proper
	 argument object lifetimes.

        New readability-use-anyofallof	check.

	 Finds range-based for loops  that  can	 be  replaced  by  a  call  to
	 std::any_of or	std::all_of.

   New check aliases
        New  alias  cert-con36-c to bugprone-spuriously-wake-up-functions was
	 added.

        New alias cert-con54-cpp to bugprone-spuriously-wake-up-functions was
	 added.

        New alias cert-dcl37-c	to bugprone-reserved-identifier	was added.

        New alias cert-dcl51-cpp to bugprone-reserved-identifier was added.

        New alias cert-str34-c	to bugprone-signed-char-misuse was added.

        New alias llvm-else-after-return to readability-else-after-return was
	 added.

   Changes in existing checks
        Improved performance-faster-string-find check.

	 Now checks std::basic_string_view by default.

        Improved readability-else-after-return	check now supports  a  WarnOn-
	 ConditionVariables  option  to	 control whether to refactor condition
	 variables where possible.

        Improved readability-identifier-naming	check.

	 Now able to rename member references in  class	 template  definitions
	 with explicit access.

        Improved   readability-redundant-string-init  check  now  supports  a
	 StringNames option enabling its application to	custom string classes.
	 The check now detects in class	initializers and constructor  initial-
	 izers which are deemed	to be redundant.

        Checks	 supporting  the  HeaderFileExtensions flag now	support	; as a
	 delimiter in addition to ,, with the latter being  deprecated	as  of
	 this  release.	 This  simplifies how one specifies the	options	on the
	 command line: --config="{CheckOptions:	[{ key:	 HeaderFileExtensions,
	 value:	h;;hpp;hxx }]}"

        Improved  readability-qualified-auto check now	supports a AddConstTo-
	 Qualified to enable adding const qualifiers to	variables  typed  with
	 auto *	and auto &.

   Renamed checks
        The	'fuchsia-restrict-system-headers'   check   was	  renamed   to
	 portability-restrict-system-includes

   Other improvements
        For run-clang-tidy.py add option to use alpha checkers	from clang-an-
	 alyzer.

CLANG-TIDY
   Contents
        Clang-Tidy

	  Using clang-tidy

	  Suppressing Undesired Diagnostics

       See also:

   Clang-Tidy Checks
   abseil-duration-addition
       Check for cases where addition should be	performed  in  the  absl::Time
       domain.	 When adding two values, and one is known to be	an absl::Time,
       we can infer that the other should be interpreted as an	absl::Duration
       of a similar scale, and make that inference explicit.

       Examples:

	  // Original -	Addition in the	integer	domain
	  int x;
	  absl::Time t;
	  int result = absl::ToUnixSeconds(t) +	x;

	  // Suggestion	- Addition in the absl::Time domain
	  int result = absl::ToUnixSeconds(t + absl::Seconds(x));

   abseil-duration-comparison
       Checks for comparisons which should be in the absl::Duration domain in-
       stead of	the floating point or integer domains.

       N.B.:  In  cases	where a	Duration was being converted to	an integer and
       then compared against a floating-point value, truncation	during the Du-
       ration conversion might yield a different result. In practice  this  is
       very rare, and still indicates a	bug which should be fixed.

       Examples:

	  // Original -	Comparison in the floating point domain
	  double x;
	  absl::Duration d;
	  if (x	< absl::ToDoubleSeconds(d)) ...

	  // Suggested - Compare in the	absl::Duration domain instead
	  if (absl::Seconds(x) < d) ...

	  // Original -	Comparison in the integer domain
	  int x;
	  absl::Duration d;
	  if (x	< absl::ToInt64Microseconds(d))	...

	  // Suggested - Compare in the	absl::Duration domain instead
	  if (absl::Microseconds(x) < d) ...

   abseil-duration-conversion-cast
       Checks for casts	of absl::Duration conversion functions,	and recommends
       the right conversion function instead.

       Examples:

	  // Original -	Cast from a double to an integer
	  absl::Duration d;
	  int i	= static_cast<int>(absl::ToDoubleSeconds(d));

	  // Suggested - Use the integer conversion function directly.
	  int i	= absl::ToInt64Seconds(d);

	  // Original -	Cast from a double to an integer
	  absl::Duration d;
	  double x = static_cast<double>(absl::ToInt64Seconds(d));

	  // Suggested - Use the integer conversion function directly.
	  double x = absl::ToDoubleSeconds(d);

       Note:  In the second example, the suggested fix could yield a different
       result, as the conversion to integer could truncate.  In	practice, this
       is very rare, and you should use	absl::Trunc to perform this  operation
       explicitly instead.

   abseil-duration-division
       absl::Duration  arithmetic works	like it	does with integers. That means
       that division of	two absl::Duration objects returns an int64  with  any
       fractional  component truncated toward 0. See this link for more	infor-
       mation on arithmetic with absl::Duration.

       For example:

	  absl::Duration d = absl::Seconds(3.5);
	  int64	sec1 = d / absl::Seconds(1);	 // Truncates toward 0.
	  int64	sec2 = absl::ToInt64Seconds(d);	 // Equivalent to division.
	  assert(sec1 == 3 && sec2 == 3);

	  double dsec =	d / absl::Seconds(1);  // WRONG: Still truncates toward	0.
	  assert(dsec == 3.0);

       If  you	want  floating-point  division,	 you  should  use  either  the
       absl::FDivDuration()  function, or one of the unit conversion functions
       such as absl::ToDoubleSeconds().	For example:

	  absl::Duration d = absl::Seconds(3.5);
	  double dsec1 = absl::FDivDuration(d, absl::Seconds(1));  // GOOD: No truncation.
	  double dsec2 = absl::ToDoubleSeconds(d);		   // GOOD: No truncation.
	  assert(dsec1 == 3.5 && dsec2 == 3.5);

       This check looks	for uses of absl::Duration division that is done in  a
       floating-point  context,	 and recommends	the use	of a function that re-
       turns a floating-point value.

   abseil-duration-factory-float
       Checks  for  cases  where  the  floating-point  overloads  of   various
       absl::Duration factory functions	are called when	the more-efficient in-
       teger versions could be used instead.

       This check will not suggest fixes for literals which contain fractional
       floating	 point values or non-literals. It will suggest removing	super-
       fluous casts.

       Examples:

	  // Original -	Providing a floating-point literal.
	  absl::Duration d = absl::Seconds(10.0);

	  // Suggested - Use an	integer	instead.
	  absl::Duration d = absl::Seconds(10);

	  // Original -	Explicitly casting to a	floating-point type.
	  absl::Duration d = absl::Seconds(static_cast<double>(10));

	  // Suggested - Remove	the explicit cast
	  absl::Duration d = absl::Seconds(10);

   abseil-duration-factory-scale
       Checks for cases	where arguments	to  absl::Duration  factory  functions
       are scaled internally and could be changed to a different factory func-
       tion.  This  check  also	looks for arguments with a zero	value and sug-
       gests using absl::ZeroDuration()	instead.

       Examples:

	  // Original -	Internal multiplication.
	  int x;
	  absl::Duration d = absl::Seconds(60 *	x);

	  // Suggested - Use absl::Minutes instead.
	  absl::Duration d = absl::Minutes(x);

	  // Original -	Internal division.
	  int y;
	  absl::Duration d = absl::Milliseconds(y / 1000.);

	  // Suggested - Use absl:::Seconds instead.
	  absl::Duration d = absl::Seconds(y);

	  // Original -	Zero-value argument.
	  absl::Duration d = absl::Hours(0);

	  // Suggested = Use absl::ZeroDuration	instead
	  absl::Duration d = absl::ZeroDuration();

   abseil-duration-subtraction
       Checks for cases	where subtraction should be performed in the absl::Du-
       ration domain. When subtracting two values, and the first one is	 known
       to  be  a  conversion from absl::Duration, we can infer that the	second
       should also be interpreted as an	absl::Duration,	and make  that	infer-
       ence explicit.

       Examples:

	  // Original -	Subtraction in the double domain
	  double x;
	  absl::Duration d;
	  double result	= absl::ToDoubleSeconds(d) - x;

	  // Suggestion	- Subtraction in the absl::Duration domain instead
	  double result	= absl::ToDoubleSeconds(d - absl::Seconds(x));

	  // Original -	Subtraction of two Durations in	the double domain
	  absl::Duration d1, d2;
	  double result	= absl::ToDoubleSeconds(d1) - absl::ToDoubleSeconds(d2);

	  // Suggestion	- Subtraction in the absl::Duration domain instead
	  double result	= absl::ToDoubleSeconds(d1 - d2);

       Note:  As  with	other  clang-tidy checks, it is	possible that multiple
       fixes may overlap (as in	the case of nested expressions),  so  not  all
       occurrences  can	be transformed in one run. In particular, this may oc-
       cur for nested subtraction  expressions.	 Running  clang-tidy  multiple
       times will find and fix these overlaps.

   abseil-duration-unnecessary-conversion
       Finds  and  fixes cases where absl::Duration values are being converted
       to numeric types	and back again.

       Floating-point examples:

	  // Original -	Conversion to double and back again
	  absl::Duration d1;
	  absl::Duration d2 = absl::Seconds(absl::ToDoubleSeconds(d1));

	  // Suggestion	- Remove unnecessary conversions
	  absl::Duration d2 = d1;

	  // Original -	Division to convert to double and back again
	  absl::Duration d2 = absl::Seconds(absl::FDivDuration(d1, absl::Seconds(1)));

	  // Suggestion	- Remove division and conversion
	  absl::Duration d2 = d1;

       Integer examples:

	  // Original -	Conversion to integer and back again
	  absl::Duration d1;
	  absl::Duration d2 = absl::Hours(absl::ToInt64Hours(d1));

	  // Suggestion	- Remove unnecessary conversions
	  absl::Duration d2 = d1;

	  // Original -	Integer	division followed by conversion
	  absl::Duration d2 = absl::Seconds(d1 / absl::Seconds(1));

	  // Suggestion	- Remove division and conversion
	  absl::Duration d2 = d1;

       Unwrapping scalar operations:

	  // Original -	Multiplication by a scalar
	  absl::Duration d1;
	  absl::Duration d2 = absl::Seconds(absl::ToInt64Seconds(d1) * 2);

	  // Suggestion	- Remove unnecessary conversion
	  absl::Duration d2 = d1 * 2;

       Note: Converting	to an integer and back to an absl::Duration might be a
       truncating operation if the value is not	aligned	to the scale  of  con-
       version.	  In  the rare case where this is the intended result, callers
       should use absl::Trunc to truncate explicitly.

   abseil-faster-strsplit-delimiter
       Finds instances of absl::StrSplit() or absl::MaxSplits()	where the  de-
       limiter	is a single character string literal and replaces with a char-
       acter.  The check will offer a suggestion to change the string  literal
       into  a character.  It will also	catch code using absl::ByAnyChar() for
       just a single character and will	transform that into a single character
       as well.

       These changes will give the same	result,	but  using  characters	rather
       than single character string literals is	more efficient and readable.

       Examples:

	  // Original -	the argument is	a string literal.
	  for (auto piece : absl::StrSplit(str,	"B")) {

	  // Suggested - the argument is a character, which causes the more efficient
	  // overload of absl::StrSplit() to be	used.
	  for (auto piece : absl::StrSplit(str,	'B')) {

	  // Original -	the argument is	a string literal inside	absl::ByAnyChar	call.
	  for (auto piece : absl::StrSplit(str,	absl::ByAnyChar("B"))) {

	  // Suggested - the argument is a character, which causes the more efficient
	  // overload of absl::StrSplit() to be	used and we do not need	absl::ByAnyChar
	  // anymore.
	  for (auto piece : absl::StrSplit(str,	'B')) {

	  // Original -	the argument is	a string literal inside	absl::MaxSplits	call.
	  for (auto piece : absl::StrSplit(str,	absl::MaxSplits("B", 1))) {

	  // Suggested - the argument is a character, which causes the more efficient
	  // overload of absl::StrSplit() to be	used.
	  for (auto piece : absl::StrSplit(str,	absl::MaxSplits('B', 1))) {
       subl.. title:: clang-tidy - abseil-no-internal-dependencies

   abseil-no-internal-dependencies
       Warns if	code using Abseil depends on internal details. If something is
       in  a namespace that includes the word internal,	code is	not allowed to
       depend upon it beaucse its an implementation detail. They cannot	friend
       it, include it, you mention it or refer to it in	any way. Doing so vio-
       lates Abseil's compatibility guidelines and may result in breakage. See
       https://abseil.io/about/compatibility for more information.

       The following cases will	result in warnings:

	  absl::strings_internal::foo();
	  // warning triggered on this line
	  class	foo {
	    friend struct absl::container_internal::faa;
	    // warning triggered on this line
	  };
	  absl::memory_internal::MakeUniqueResult();
	  // warning triggered on this line

   abseil-no-namespace
       Ensures code does not open namespace absl  as  that  violates  Abseil's
       compatibility  guidelines.  Code	should not open	namespace absl as that
       conflicts with Abseil's compatibility  guidelines  and  may  result  in
       breakage.

       Any code	that uses:

	  namespace absl {
	   ...
	  }

       will be prompted	with a warning.

       See the full Abseil compatibility guidelines for	more information.

   abseil-redundant-strcat-calls
       Suggests	 removal  of unnecessary calls to absl::StrCat when the	result
       is being	passed to another call to absl::StrCat or absl::StrAppend.

       The extra calls cause unnecessary temporary strings to be  constructed.
       Removing	them makes the code smaller and	faster.

       Examples:

	  std::string s	= absl::StrCat("A", absl::StrCat("B", absl::StrCat("C",	"D")));
	  //before

	  std::string s	= absl::StrCat("A", "B", "C", "D");
	  //after

	  absl::StrAppend(&s, absl::StrCat("E",	"F", "G"));
	  //before

	  absl::StrAppend(&s, "E", "F",	"G");
	  //after

   abseil-str-cat-append
       Flags  uses  of	absl::StrCat()	to  append  to a std::string. Suggests
       absl::StrAppend() should	be used	instead.

       The extra calls cause unnecessary temporary strings to be  constructed.
       Removing	them makes the code smaller and	faster.

	  a = absl::StrCat(a, b); // Use absl::StrAppend(&a, b)	instead.

       Does  not diagnose cases	where absl::StrCat() is	used as	a template ar-
       gument for a functor.

   abseil-string-find-startswith
       Checks whether a	std::string::find() result is  compared	 with  0,  and
       suggests	 replacing with	absl::StartsWith(). This is both a readability
       and performance issue.

	  string s = "...";
	  if (s.find("Hello World") == 0) { /* do something */ }

       becomes

	  string s = "...";
	  if (absl::StartsWith(s, "Hello World")) { /* do something */ }

   Options
       StringLikeClasses
	      Semicolon-separated list of names	of string-like classes.	By de-
	      fault only std::basic_string is considered. The list of  methods
	      to considered is fixed.

       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

       AbseilStringsMatchHeader
	      The   location   of   Abseil's   strings/match.h.	  Defaults  to
	      absl/strings/match.h.

   abseil-string-find-str-contains
       Finds s.find(...) == string::npos comparisons (for various  string-like
       types) and suggests replacing with absl::StrContains().

       This  improves  readability  and	reduces	the likelihood of accidentally
       mixing find() and npos from different string-like types.

       By   default,   "string-like   types"   includes	  ::std::basic_string,
       ::std::basic_string_view, and ::absl::string_view.  See the StringLike-
       Classes option to change	this.

	  std::string s	= "...";
	  if (s.find("Hello World") == std::string::npos) { /* do something */ }

	  absl::string_view a =	"...";
	  if (absl::string_view::npos != a.find("Hello World"))	{ /* do	something */ }

       becomes

	  std::string s	= "...";
	  if (!absl::StrContains(s, "Hello World")) { /* do something */ }

	  absl::string_view a =	"...";
	  if (absl::StrContains(a, "Hello World")) { /*	do something */	}

   Options
       StringLikeClasses
	      Semicolon-separated list of names	of string-like classes.	By de-
	      fault  includes  ::std::basic_string,  ::std::basic_string_view,
	      and ::absl::string_view.

       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

       AbseilStringsMatchHeader
	      The  location   of   Abseil's   strings/match.h.	 Defaults   to
	      absl/strings/match.h.

   abseil-time-comparison
       Prefer  comparisons in the absl::Time domain instead of the integer do-
       main.

       N.B.: In	cases where an absl::Time is being converted  to  an  integer,
       alignment may occur. If the comparison depends on this alignment, doing
       the  comparison	in the absl::Time domain may yield a different result.
       In practice this	is very	rare, and still	indicates a bug	 which	should
       be fixed.

       Examples:

	  // Original -	Comparison in the integer domain
	  int x;
	  absl::Time t;
	  if (x	< absl::ToUnixSeconds(t)) ...

	  // Suggested - Compare in the	absl::Time domain instead
	  if (absl::FromUnixSeconds(x) < t) ...

   abseil-time-subtraction
       Finds and fixes absl::Time subtraction expressions to do	subtraction in
       the Time	domain instead of the numeric domain.

       There are two cases of Time subtraction in which	deduce additional type
       information:

        When  the  result  is	an absl::Duration and the first	argument is an
	 absl::Time.

        When the second argument is a absl::Time.

       In the first case, we must know the  result  of	the  operation,	 since
       without	that  the  second  operand could be either an absl::Time or an
       absl::Duration.	In the second case,  the  first	 operand  must	be  an
       absl::Time, because subtracting an absl::Time from an absl::Duration is
       not defined.

       Examples:

	  int x;
	  absl::Time t;

	  // Original -	absl::Duration result and first	operand	is a absl::Time.
	  absl::Duration d = absl::Seconds(absl::ToUnixSeconds(t) - x);

	  // Suggestion	- Perform subtraction in the Time domain instead.
	  absl::Duration d = t - absl::FromUnixSeconds(x);

	  // Original -	Second operand is an absl::Time.
	  int i	= x - absl::ToUnixSeconds(t);

	  // Suggestion	- Perform subtraction in the Time domain instead.
	  int i	= absl::ToInt64Seconds(absl::FromUnixSeconds(x)	- t);

   abseil-upgrade-duration-conversions
       Finds  calls to absl::Duration arithmetic operators and factories whose
       argument	needs an explicit cast to continue  compiling  after  upcoming
       API changes.

       The  operators  *=, /=, *, and /	for absl::Duration currently accept an
       argument	of class type that is convertible to an	arithmetic type.  Such
       a  call currently converts the value to an int64_t, even	in a case such
       as std::atomic<float> that would	result in lossy	conversion.

       Additionally,  the  absl::Duration  factory   functions	 (absl::Hours,
       absl::Minutes,  etc)  currently	accept	an int64_t or a	floating-point
       type. Similar to	the arithmetic operators, calls	with  an  argument  of
       class  type  that  is  convertible to an	arithmetic type	go through the
       int64_t path.

       These operators and factories will be changed to	only accept arithmetic
       types to	prevent	unintended behavior. After these changes are released,
       passing an argument of class type will no longer	compile, even  if  the
       type is implicitly convertible to an arithmetic type.

       Here are	example	fixes created by this check:

	  std::atomic<int> a;
	  absl::Duration d = absl::Milliseconds(a);
	  d *= a;

       becomes

	  std::atomic<int> a;
	  absl::Duration d = absl::Milliseconds(static_cast<int64_t>(a));
	  d *= static_cast<int64_t>(a);

       Note that this check always adds	a cast to int64_t in order to preserve
       the  current  behavior  of user code. It	is possible that this uncovers
       unintended behavior due to types	implicitly  convertible	 to  a	float-
       ing-point type.

   android-cloexec-accept
       The usage of accept() is	not recommended, it's better to	use accept4().
       Without	this  flag,  an	 opened	sensitive file descriptor would	remain
       open across a fork+exec to a lower-privileged SELinux domain.

       Examples:

	  accept(sockfd, addr, addrlen);

	  // becomes

	  accept4(sockfd, addr,	addrlen, SOCK_CLOEXEC);

   android-cloexec-accept4
       accept4() should	include	SOCK_CLOEXEC in	its type argument to avoid the
       file descriptor leakage.	Without	this flag, an  opened  sensitive  file
       would  remain open across a fork+exec to	a lower-privileged SELinux do-
       main.

       Examples:

	  accept4(sockfd, addr,	addrlen, SOCK_NONBLOCK);

	  // becomes

	  accept4(sockfd, addr,	addrlen, SOCK_NONBLOCK | SOCK_CLOEXEC);

   android-cloexec-creat
       The usage of creat() is not recommended,	it's better to use open().

       Examples:

	  int fd = creat(path, mode);

	  // becomes

	  int fd = open(path, O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC,	mode);

   android-cloexec-dup
       The usage of dup() is not recommended,  it's  better  to	 use  fcntl(),
       which  can  set	the close-on-exec flag.	Otherwise, an opened sensitive
       file would remain open across a fork+exec to a lower-privileged SELinux
       domain.

       Examples:

	  int fd = dup(oldfd);

	  // becomes

	  int fd = fcntl(oldfd,	F_DUPFD_CLOEXEC);

   android-cloexec-epoll-create
       The usage of epoll_create() is not  recommended,	 it's  better  to  use
       epoll_create1(),	which allows close-on-exec.

       Examples:

	  epoll_create(size);

	  // becomes

	  epoll_create1(EPOLL_CLOEXEC);

   android-cloexec-epoll-create1
       epoll_create1()	should	include	 EPOLL_CLOEXEC in its type argument to
       avoid the file descriptor leakage. Without this flag, an	opened	sensi-
       tive  file  would  remain open across a fork+exec to a lower-privileged
       SELinux domain.

       Examples:

	  epoll_create1(0);

	  // becomes

	  epoll_create1(EPOLL_CLOEXEC);

   android-cloexec-fopen
       fopen() should include e	in their mode string; so re  would  be	valid.
       This is equivalent to having set	FD_CLOEXEC on that descriptor.

       Examples:

	  fopen("fn", "r");

	  // becomes

	  fopen("fn", "re");

   android-cloexec-inotify-init
       The usage of inotify_init() is not recommended, it's better to use ino-
       tify_init1().

       Examples:

	  inotify_init();

	  // becomes

	  inotify_init1(IN_CLOEXEC);

   android-cloexec-inotify-init1
       inotify_init1() should include IN_CLOEXEC in its	type argument to avoid
       the  file  descriptor  leakage.	Without	this flag, an opened sensitive
       file would remain open across a fork+exec to a lower-privileged SELinux
       domain.

       Examples:

	  inotify_init1(IN_NONBLOCK);

	  // becomes

	  inotify_init1(IN_NONBLOCK | IN_CLOEXEC);

   android-cloexec-memfd-create
       memfd_create() should include MFD_CLOEXEC in its	type argument to avoid
       the file	descriptor leakage. Without this  flag,	 an  opened  sensitive
       file would remain open across a fork+exec to a lower-privileged SELinux
       domain.

       Examples:

	  memfd_create(name, MFD_ALLOW_SEALING);

	  // becomes

	  memfd_create(name, MFD_ALLOW_SEALING | MFD_CLOEXEC);

   android-cloexec-open
       A  common source	of security bugs is code that opens a file without us-
       ing the O_CLOEXEC flag.	Without	that flag, an  opened  sensitive  file
       would  remain open across a fork+exec to	a lower-privileged SELinux do-
       main,  leaking  that  sensitive	data.  Open-like  functions  including
       open(),	openat(), and open64() should include O_CLOEXEC	in their flags
       argument.

       Examples:

	  open("filename", O_RDWR);
	  open64("filename", O_RDWR);
	  openat(0, "filename",	O_RDWR);

	  // becomes

	  open("filename", O_RDWR | O_CLOEXEC);
	  open64("filename", O_RDWR | O_CLOEXEC);
	  openat(0, "filename",	O_RDWR | O_CLOEXEC);

   android-cloexec-pipe
       This check detects usage	of pipe(). Using pipe()	 is  not  recommended,
       pipe2() is the suggested	replacement. The check also adds the O_CLOEXEC
       flag  that  marks  the file descriptor to be closed in child processes.
       Without this flag a sensitive file descriptor can be leaked to a	 child
       process,	potentially into a lower-privileged SELinux domain.

       Examples:

	  pipe(pipefd);

       Suggested replacement:

	  pipe2(pipefd,	O_CLOEXEC);

   android-cloexec-pipe2
       This checks ensures that	pipe2()	is called with the O_CLOEXEC flag. The
       check also adds the O_CLOEXEC flag that marks the file descriptor to be
       closed in child processes.  Without this	flag a sensitive file descrip-
       tor  can	 be leaked to a	child process, potentially into	a lower-privi-
       leged SELinux domain.

       Examples:

	  pipe2(pipefd,	O_NONBLOCK);

       Suggested replacement:

	  pipe2(pipefd,	O_NONBLOCK | O_CLOEXEC);

   android-cloexec-socket
       socket()	should include SOCK_CLOEXEC in its type	argument to avoid  the
       file  descriptor	 leakage.  Without this	flag, an opened	sensitive file
       would remain open across	a fork+exec to a lower-privileged SELinux  do-
       main.

       Examples:

	  socket(domain, type, SOCK_STREAM);

	  // becomes

	  socket(domain, type, SOCK_STREAM | SOCK_CLOEXEC);

   android-comparison-in-temp-failure-retry
       Diagnoses comparisons that appear to be incorrectly placed in the argu-
       ment to the TEMP_FAILURE_RETRY macro. Having such a use is incorrect in
       the  vast majority of cases, and	will often silently defeat the purpose
       of the TEMP_FAILURE_RETRY macro.

       For context, TEMP_FAILURE_RETRY is a convenience	macro provided by both
       glibc and Bionic. Its purpose is	to repeatedly run a syscall  until  it
       either succeeds,	or fails for reasons other than	being interrupted.

       Example buggy usage looks like:

	  char cs[1];
	  while	(TEMP_FAILURE_RETRY(read(STDIN_FILENO, cs, sizeof(cs)) != 0)) {
	    // Do something with cs.
	  }

       Because	TEMP_FAILURE_RETRY  will  check	 for whether the result	of the
       comparison is -1, and retry if so.

       If you encounter	this, the fix is simple: lift the  comparison  out  of
       the TEMP_FAILURE_RETRY argument,	like so:

	  char cs[1];
	  while	(TEMP_FAILURE_RETRY(read(STDIN_FILENO, cs, sizeof(cs)))	!= 0) {
	    // Do something with cs.
	  }

   boost-use-to-string
       This  check  finds conversion from integer type like int	to std::string
       or std::wstring using boost::lexical_cast, and replace it with calls to
       std::to_string and std::to_wstring.

       It  doesn't  replace  conversion	 from  floating	 points	 despite   the
       to_string overloads, because it would change the	behaviour.

	  auto str = boost::lexical_cast<std::string>(42);
	  auto wstr = boost::lexical_cast<std::wstring>(2137LL);

	  // Will be changed to
	  auto str = std::to_string(42);
	  auto wstr = std::to_wstring(2137LL);

   bugprone-argument-comment
       Checks that argument comments match parameter names.

       The check understands argument comments in the form /*parameter_name=*/
       that are	placed right before the	argument.

	  void f(bool foo);

	  ...

	  f(/*bar=*/true);
	  // warning: argument name 'bar' in comment does not match parameter name 'foo'

       The check tries to detect typos and suggest automated fixes for them.

   Options
       StrictMode
	      When  zero  (default  value),  the check will ignore leading and
	      trailing underscores and case when comparing names --  otherwise
	      they are taken into account.

       IgnoreSingleArgument

       When true, the check will ignore	the single argument.

       CommentBoolLiterals
	      When  true,  the	check will add argument	comments in the	format
	      /*ParameterName=*/ right before the boolean literal argument.

       Before:

	  void foo(bool	TurnKey, bool PressButton);

	  foo(true, false);

       After:

	  void foo(bool	TurnKey, bool PressButton);

	  foo(/*TurnKey=*/true,	/*PressButton=*/false);

       CommentIntegerLiterals
	      When true, the check will	add argument comments  in  the	format
	      /*ParameterName=*/ right before the integer literal argument.

       Before:

	  void foo(int MeaningOfLife);

	  foo(42);

       After:

	  void foo(int MeaningOfLife);

	  foo(/*MeaningOfLife=*/42);

       CommentFloatLiterals
	      When  true,  the	check will add argument	comments in the	format
	      /*ParameterName=*/ right before the float/double	literal	 argu-
	      ment.

       Before:

	  void foo(float Pi);

	  foo(3.14159);

       After:

	  void foo(float Pi);

	  foo(/*Pi=*/3.14159);

       CommentStringLiterals
	      When  true,  the	check will add argument	comments in the	format
	      /*ParameterName=*/ right before the string literal argument.

       Before:

	  void foo(const char *String);
	  void foo(const wchar_t *WideString);

	  foo("Hello World");
	  foo(L"Hello World");

       After:

	  void foo(const char *String);
	  void foo(const wchar_t *WideString);

	  foo(/*String=*/"Hello	World");
	  foo(/*WideString=*/L"Hello World");

       CommentCharacterLiterals
	      When true, the check will	add argument comments  in  the	format
	      /*ParameterName=*/ right before the character literal argument.

       Before:

	  void foo(char	*Character);

	  foo('A');

       After:

	  void foo(char	*Character);

	  foo(/*Character=*/'A');

       CommentUserDefinedLiterals
	      When  true,  the	check will add argument	comments in the	format
	      /*ParameterName=*/ right before the user defined	literal	 argu-
	      ment.

       Before:

	  void foo(double Distance);

	  double operator"" _km(long double);

	  foo(402.0_km);

       After:

	  void foo(double Distance);

	  double operator"" _km(long double);

	  foo(/*Distance=*/402.0_km);

       CommentNullPtrs
	      When  true,  the	check will add argument	comments in the	format
	      /*ParameterName=*/ right before the nullptr literal argument.

       Before:

	  void foo(A* Value);

	  foo(nullptr);

       After:

	  void foo(A* Value);

	  foo(/*Value=*/nullptr);

   bugprone-assert-side-effect
       Finds assert() with side	effect.

       The condition of	assert() is evaluated only in debug builds so a	condi-
       tion with side effect can cause different behavior in debug  /  release
       builds.

   Options
       AssertMacros
	      A	 comma-separated  list	of  the	 names	of assert macros to be
	      checked.

       CheckFunctionCalls
	      Whether to treat non-const member	and  non-member	 functions  as
	      they  produce  side  effects. Disabled by	default	because	it can
	      increase the number of false positive warnings.

   bugprone-bad-signal-to-kill-thread
       Finds pthread_kill function calls when a	thread is terminated by	 rais-
       ing  SIGTERM  signal  and the signal kills the entire process, not just
       the individual thread. Use any signal except SIGTERM.

       This check corresponds to the CERT C Coding Standard rule  POS44-C.  Do
       not use signals to terminate threads.

   bugprone-bool-pointer-implicit-conversion
       Checks  for conditions based on implicit	conversion from	a bool pointer
       to bool.

       Example:

	  bool *p;
	  if (p) {
	    // Never used in a pointer-specific	way.
	  }

   bugprone-branch-clone
       Checks for repeated branches in if/else if/else chains, consecutive re-
       peated branches in switch  statements  and  identical  true  and	 false
       branches	in conditional operators.

	  if (test_value(x)) {
	    y++;
	    do_something(x, y);
	  } else {
	    y++;
	    do_something(x, y);
	  }

       In  this	 simple	example	(which could arise e.g.	as a copy-paste	error)
       the then	and else branches are identical	and the	code is	equivalent the
       following shorter and cleaner code:

	  test_value(x); // can	be omitted unless it has side effects
	  y++;
	  do_something(x, y);

       If this is the intended behavior, then there is no reason to use	a con-
       ditional	statement; otherwise the issue can be  solved  by  fixing  the
       branch that is handled incorrectly.

       The  check  also	 detects  repeated  branches in	longer if/else if/else
       chains where it would be	even harder to notice the problem.

       In switch statements the	check only reports repeated branches when they
       are consecutive,	because	it is relatively common	that the case:	labels
       have  some  natural  ordering  and  rearranging them would decrease the
       readability of the code.	For example:

	  switch (ch) {
	  case 'a':
	    return 10;
	  case 'A':
	    return 10;
	  case 'b':
	    return 11;
	  case 'B':
	    return 11;
	  default:
	    return 10;
	  }

       Here the	check reports that the 'a' and 'A' branches are	identical (and
       that the	'b' and	'B' branches are also identical), but does not	report
       that  the  default: branch is also identical to the first two branches.
       If this is indeed the correct behavior, then it	could  be  implemented
       as:

	  switch (ch) {
	  case 'a':
	  case 'A':
	    return 10;
	  case 'b':
	  case 'B':
	    return 11;
	  default:
	    return 10;
	  }

       Here the	check does not warn for	the repeated return 10;, which is good
       if  we want to preserve that 'a'	is before 'b' and default: is the last
       branch.

       Finally,	the check also examines	conditional operators and reports code
       like:

	  return test_value(x) ? x : x;

       Unlike if statements, the check does not	detect chains  of  conditional
       operators.

       Note:  This check also reports situations where branches	become identi-
       cal only	after preprocession.

   bugprone-copy-constructor-init
       Finds copy constructors where the constructor  doesn't  call  the  copy
       constructor of the base class.

	  class	Copyable {
	  public:
	    Copyable() = default;
	    Copyable(const Copyable &) = default;
	  };
	  class	X2 : public Copyable {
	    X2(const X2	&other)	{} // Copyable(other) is missing
	  };

       Also  finds  copy  constructors where the constructor of	the base class
       don't have parameter.

	  class	X4 : public Copyable {
	    X4(const X4	&other)	: Copyable() {}	// other is missing
	  };

       The check also suggests a fix-its in some cases.

   bugprone-dangling-handle
       Detect  dangling	 references  in	 value	handles	 like  std::experimen-
       tal::string_view.   These  dangling  references can be a	result of con-
       structing handles from temporary	values,	where  the  temporary  is  de-
       stroyed soon after the handle is	created.

       Examples:

	  string_view View = string();	// View	will dangle.
	  string A;
	  View = A + "A";  // still dangle.

	  vector<string_view> V;
	  V.push_back(string());  // V[0] is dangling.
	  V.resize(3, string());  // V[1] and V[2] will	also dangle.

	  string_view f() {
	    // All these return	values will dangle.
	    return string();
	    string S;
	    return S;
	    char Array[10]{};
	    return Array;
	  }

   Options
       HandleClasses
	      A	semicolon-separated list of class names	that should be treated
	      as    handles.	 By    default	 only	std::experimental::ba-
	      sic_string_view is considered.

   bugprone-dynamic-static-initializers
       Finds instances of static variables that	are dynamically	initialized in
       header files.

       This can	pose problems in certain multithreaded contexts. For  example,
       when disabling compiler generated synchronization instructions for sta-
       tic variables initialized at runtime (e.g. by -fno-threadsafe-statics),
       even if a particular project takes the necessary	precautions to prevent
       race  conditions	 during	initialization by providing their own synchro-
       nization, header	files included from other projects may not. Therefore,
       such a check is helpful for ensuring that disabling compiler  generated
       synchronization for static variable initialization will not cause prob-
       lems.

       Consider	the following code:

	  int foo() {
	    static int k = bar();
	    return k;
	  }

       When  synchronization  of  static  initialization  is  disabled,	if two
       threads both call foo for the first time, there is the possibility that
       k will be double	initialized, creating a	race condition.

   bugprone-exception-escape
       Finds functions which may throw an exception  directly  or  indirectly,
       but  they  should  not. The functions which should not throw exceptions
       are the following: * Destructors	* Move constructors * Move  assignment
       operators  * The	main() functions * swap() functions * Functions	marked
       with throw() or noexcept	* Other	functions given	as option

       A destructor throwing an	exception may result  in  undefined  behavior,
       resource	 leaks or unexpected termination of the	program. Throwing move
       constructor or move assignment also may result in undefined behavior or
       resource	leak. The swap() operations expected to	be non	throwing  most
       of  the cases and they are always possible to implement in a non	throw-
       ing way.	Non throwing swap() operations are also	used  to  create  move
       operations.  A throwing main() function also results in unexpected ter-
       mination.

       WARNING!	This check may be expensive on large source files.

   Options
       FunctionsThatShouldNotThrow
	      Comma separated list containing function names which should  not
	      throw.  An example value for this	parameter can be WinMain which
	      adds function WinMain() in the Windows API to the	 list  of  the
	      functions	 which	should	not  throw.  Default value is an empty
	      string.

       IgnoredExceptions
	      Comma separated list containing type names which are not counted
	      as thrown	exceptions in the check. Default  value	 is  an	 empty
	      string.

   bugprone-fold-init-type
       The  check  flags  type	mismatches  in folds like std::accumulate that
       might result in loss of	precision.   std::accumulate  folds  an	 input
       range  into  an initial value using the type of the latter, with	opera-
       tor+ by default.	This can cause loss of precision through:

        Truncation: The following code	uses a floating	point range and	an int
	 initial value,	so trucation will happen at every application of oper-
	 ator+ and the result will be 0, which might not be what the user  ex-
	 pected.

	  auto a = {0.5f, 0.5f,	0.5f, 0.5f};
	  return std::accumulate(std::begin(a),	std::end(a), 0);

        Overflow: The following code also returns 0.

	  auto a = {65536LL * 65536 * 65536};
	  return std::accumulate(std::begin(a),	std::end(a), 0);

   bugprone-forward-declaration-namespace
       Checks if an unused forward declaration is in a wrong namespace.

       The  check inspects all unused forward declarations and checks if there
       is any declaration/definition with the same name	existing, which	 could
       indicate	 that  the forward declaration is in a potentially wrong name-
       space.

	  namespace na { struct	A; }
	  namespace nb { struct	A {}; }
	  nb::A	a;
	  // warning : no definition found for 'A', but	a definition with the same name
	  // 'A' found in another namespace 'nb::'

       This check can only generate warnings, but it can't suggest  a  fix  at
       this point.

   bugprone-forwarding-reference-overload
       The  check looks	for perfect forwarding constructors that can hide copy
       or move constructors. If	a non const lvalue reference is	passed to  the
       constructor,  the forwarding reference parameter	will be	a better match
       than the	const reference	parameter of the copy constructor, so the per-
       fect forwarding constructor will	be called,  which  can	be  confusing.
       For  detailed  description  of  this issue see: Scott Meyers, Effective
       Modern C++, Item	26.

       Consider	the following example:

	  class	Person {
	  public:
	    // C1: perfect forwarding ctor
	    template<typename T>
	    explicit Person(T&&	n) {}

	    // C2: perfect forwarding ctor with	parameter default value
	    template<typename T>
	    explicit Person(T&&	n, int x = 1) {}

	    // C3: perfect forwarding ctor guarded with	enable_if
	    template<typename T, typename X = enable_if_t<is_special<T>,void>>
	    explicit Person(T&&	n) {}

	    // (possibly compiler generated) copy ctor
	    Person(const Person& rhs);
	  };

       The check warns for constructors	C1 and C2, because those can hide copy
       and move	constructors. We suppress warnings if the copy	and  the  move
       constructors  are  both disabled	(deleted or private), because there is
       nothing the perfect forwarding constructor could	hide in	this case.  We
       also  suppress  warnings	for constructors like C3 that are guarded with
       an enable_if, assuming the programmer was aware of the possible hiding.

   Background
       For deciding whether a constructor is guarded with enable_if,  we  con-
       sider  the  default  values of the type parameters and the types	of the
       constructor parameters. If any part of these types is std::enable_if or
       std::enable_if_t, we assume the constructor is guarded.

   bugprone-inaccurate-erase
       Checks for inaccurate use of the	erase()	method.

       Algorithms like remove()	do not actually	remove any  element  from  the
       container  but return an	iterator to the	first redundant	element	at the
       end of the container. These redundant elements must  be	removed	 using
       the  erase() method. This check warns when not all of the elements will
       be removed due to using an inappropriate	overload.

       For example, the	following code erases only one element:

	  std::vector<int> xs;
	  ...
	  xs.erase(std::remove(xs.begin(), xs.end(), 10));

       Call the	two-argument overload of erase() to remove the subrange:

	  std::vector<int> xs;
	  ...
	  xs.erase(std::remove(xs.begin(), xs.end(), 10), xs.end());

   bugprone-incorrect-roundings
       Checks the usage	of patterns known to produce incorrect rounding.  Pro-
       grammers	often use:

	  (int)(double_expression + 0.5)

       to round	the double expression to an integer. The problem with this:

       1. It is	unnecessarily slow.

       2. It is	incorrect.  The	 number	 0.499999975  (smallest	 representable
	  float	number below 0.5) rounds to 1.0. Even worse behavior for nega-
	  tive numbers where both -0.5f	and -1.4f both round to	0.0.

   bugprone-infinite-loop
       Finds obvious infinite loops (loops where the condition variable	is not
       changed at all).

       Finding	infinite  loops	 is well-known to be impossible	(halting prob-
       lem).  However, it is possible to detect	some obvious  infinite	loops,
       for  example,  if the loop condition is not changed. This check detects
       such loops. A loop is considered	infinite if it does not	have any  loop
       exit  statement	(break,	 continue,  goto, return, throw	or a call to a
       function	called as [[noreturn]])	and all	of  the	 following  conditions
       hold for	every variable in the condition:

        It is a local variable.

        It has	no reference or	pointer	aliases.

        It is not a structure or class	member.

       Furthermore, the	condition must not contain a function call to consider
       the  loop infinite since	functions may return different values for dif-
       ferent calls.

       For example, the	following loop is considered infinite i	is not changed
       in the body:

	  int i	= 0, j = 0;
	  while	(i < 10) {
	    ++j;
	  }

   bugprone-integer-division
       Finds cases where integer division  in  a  floating  point  context  is
       likely to cause unintended loss of precision.

       No reports are made if divisions	are part of the	following expressions:

        operands of operators expecting integral or bool types,

        call expressions of integral or bool types, and

        explicit cast expressions to integral or bool types,

       as  these  are interpreted as signs of deliberateness from the program-
       mer.

       Examples:

	  float	floatFunc(float);
	  int intFunc(int);
	  double d;
	  int i	= 42;

	  // Warn, floating-point values expected.
	  d = 32 * 8 / (2 + i);
	  d = 8	* floatFunc(1 +	7 / 2);
	  d = i	/ (1 <<	4);

	  // OK, no integer division.
	  d = 32 * 8.0 / (2 + i);
	  d = 8	* floatFunc(1 +	7.0 / 2);
	  d = (double)i	/ (1 <<	4);

	  // OK, there are signs of deliberateness.
	  d = 1	<< (i /	2);
	  d = 9	+ intFunc(6 * i	/ 32);
	  d = (int)(i /	32) - 8;

   bugprone-lambda-function-name
       Checks for attempts to get the name of a	function from within a	lambda
       expression.  The	 name of a lambda is always something like operator(),
       which is	almost never what was intended.

       Example:

	  void FancyFunction() {
	    [] { printf("Called	from %s\n", __func__); }();
	    [] { printf("Now called from %s\n",	__FUNCTION__); }();
	  }

       Output:

	  Called from operator()
	  Now called from operator()

       Likely intended output:

	  Called from FancyFunction
	  Now called from FancyFunction

   bugprone-macro-parentheses
       Finds macros that can have unexpected behaviour due to  missing	paren-
       theses.

       Macros  are  expanded by	the preprocessor as-is.	As a result, there can
       be unexpected behaviour;	operators may be evaluated in unexpected order
       and unary operators may become binary operators,	etc.

       When the	replacement list has an	expression, it is recommended to  sur-
       round it	with parentheses. This ensures that the	macro result is	evalu-
       ated completely before it is used.

       It  is  also recommended	to surround macro arguments in the replacement
       list with parentheses. This ensures that	the argument value  is	calcu-
       lated properly.

   bugprone-macro-repeated-side-effects
       Checks for repeated argument with side effects in macros.

   bugprone-misplaced-operator-in-strlen-in-alloc
       Finds cases where 1 is added to the string in the argument to strlen(),
       strnlen(), strnlen_s(), wcslen(), wcsnlen(), and	wcsnlen_s() instead of
       the  result and the value is used as an argument	to a memory allocation
       function	(malloc(), calloc(), realloc(),	alloca()) or the new[]	opera-
       tor  in	C++.  The check	detects	error cases even if one	of these func-
       tions (except the new[] operator) is  called  by	 a  constant  function
       pointer.	  Cases	 where 1 is added both to the parameter	and the	result
       of the strlen()-like function are ignored, as are cases where the whole
       addition	is surrounded by extra parentheses.

       C example code:

	  void bad_malloc(char *str) {
	    char *c = (char*) malloc(strlen(str	+ 1));
	  }

       The suggested fix is to add 1 to	the return value of strlen()  and  not
       to its argument.	In the example above the fix would be

	  char *c = (char*) malloc(strlen(str) + 1);

       C++ example code:

	  void bad_new(char *str) {
	    char *c = new char[strlen(str + 1)];
	  }

       As  in  the  C code with	the malloc() function, the suggested fix is to
       add 1 to	the return value of strlen() and not to	its argument.  In  the
       example above the fix would be

	  char *c = new	char[strlen(str) + 1];

       Example for silencing the diagnostic:

	  void bad_malloc(char *str) {
	    char *c = (char*) malloc(strlen((str + 1)));
	  }

   bugprone-misplaced-pointer-arithmetic-in-alloc
       Finds  cases where an integer expression	is added to or subtracted from
       the result of a memory allocation function (malloc(),  calloc(),	 real-
       loc(), alloca())	instead	of its argument. The check detects error cases
       even  if	 one  of  these	 functions  is	called	by a constant function
       pointer.

       Example code:

	  void bad_malloc(int n) {
	    char *p = (char*) malloc(n)	+ 10;
	  }

       The suggested fix is to add the integer expression to the  argument  of
       malloc and not to its result. In	the example above the fix would	be

	  char *p = (char*) malloc(n + 10);

   bugprone-misplaced-widening-cast
       This  check will	warn when there	is a cast of a calculation result to a
       bigger type. If the intention of	the cast is to avoid loss of precision
       then the	cast is	misplaced, and there can be loss of precision.	Other-
       wise the	cast is	ineffective.

       Example code:

	  long f(int x)	{
	      return (long)(x *	1000);
	  }

       The result x * 1000 is first calculated using int precision. If the re-
       sult  exceeds int precision there is loss of precision. Then the	result
       is casted to long.

       If there	is no loss of precision	then the cast can be  removed  or  you
       can explicitly cast to int instead.

       If  you	want  to avoid loss of precision then put the cast in a	proper
       location, for instance:

	  long f(int x)	{
	      return (long)x * 1000;
	  }

   Implicit casts
       Forgetting to place the cast at all is at least	as  dangerous  and  at
       least  as common	as misplacing it. If CheckImplicitCasts	is enabled the
       check also detects these	cases, for instance:

	  long f(int x)	{
	      return x * 1000;
	  }

   Floating point
       Currently warnings are only written for integer conversion. No  warning
       is written for this code:

	  double f(float x) {
	      return (double)(x	* 10.0f);
	  }

   Options
       CheckImplicitCasts
	      If  non-zero,  enables  detection	 of implicit casts. Default is
	      non-zero.

   bugprone-move-forwarding-reference
       Warns if	std::move is called on a forwarding reference, for example:

	  template <typename T>
	  void foo(T&& t) {
	    bar(std::move(t));
	  }

       Forwarding references should typically be passed	 to  std::forward  in-
       stead of	std::move, and this is the fix that will be suggested.

       (A  forwarding reference	is an rvalue reference of a type that is a de-
       duced function template argument.)

       In this example,	the suggested fix would	be

	  bar(std::forward<T>(t));

   Background
       Code like the example above is sometimes	written	with  the  expectation
       that  T&&  will always end up being an rvalue reference,	no matter what
       type is deduced for T, and that it is therefore not possible to pass an
       lvalue to foo().	However, this is not true. Consider this example:

	  std::string s	= "Hello, world";
	  foo(s);

       This code compiles and, after the call to foo(),	s is left in an	 inde-
       terminate  state	because	it has been moved from.	This may be surprising
       to the caller of	foo() because  no  std::move  was  used	 when  calling
       foo().

       The  reason for this behavior lies in the special rule for template ar-
       gument deduction	on function templates like foo() -- i.e.  on  function
       templates  that	take  an rvalue	reference argument of a	type that is a
       deduced function	template argument. (See	 section  [temp.deduct.call]/3
       in the C++11 standard.)

       If  foo()  is  called on	an lvalue (as in the example above), then T is
       deduced to be an	lvalue reference. In the example, T is deduced	to  be
       std::string   &.	  The	type  of  the  argument	 t  therefore  becomes
       std::string& &&;	by the reference collapsing rules, this	 collapses  to
       std::string&.

       This  means  that  the foo(s) call passes s as an lvalue	reference, and
       foo() ends up moving s and thereby placing  it  into  an	 indeterminate
       state.

   bugprone-multiple-statement-macro
       Detect  multiple	 statement macros that are used	in unbraced condition-
       als. Only the first statement of	the macro will be  inside  the	condi-
       tional and the other ones will be executed unconditionally.

       Example:

	  #define INCREMENT_TWO(x, y) (x)++; (y)++
	  if (do_increment)
	    INCREMENT_TWO(a, b);  // (b)++ will	be executed unconditionally.

   bugprone-no-escape
       Finds  pointers	with  the  noescape  attribute that are	captured by an
       asynchronously-executed block. The block	arguments in  dispatch_async()
       and  dispatch_after()  are guaranteed to	escape,	so it is an error if a
       pointer with the	noescape attribute is captured by one of these blocks.

       The following is	an example of an  invalid  use	of  the	 noescape  at-
       tribute.

	      void foo(__attribute__((noescape)) int *p) {
		dispatch_async(queue, ^{
		  *p = 123;
		});
	      });

   bugprone-not-null-terminated-result
       Finds  function	calls  where it	is possible to cause a not null-termi-
       nated result.  Usually the proper length	of a string is strlen(src) + 1
       or equal	length of this expression, because the null  terminator	 needs
       an  extra space.	Without	the null terminator it can result in undefined
       behaviour when the string is read.

       The following and their respective wchar_t based	functions are checked:

       memcpy, memcpy_s,  memchr,  memmove,  memmove_s,	 strerror_s,  strncmp,
       strxfrm

       The  following  is  a real-world	example	where the programmer forgot to
       increase	the passed third argument, which is size_t length. That	is why
       the length of the allocated memory is not enough	to hold	the null  ter-
       minator.

	      static char *stringCpy(const std::string &str) {
		char *result = reinterpret_cast<char *>(malloc(str.size()));
		memcpy(result, str.data(), str.size());
		return result;
	      }

       In  addition  to	 issuing  warnings,  fix-it rewrites all the necessary
       code. It	also tries to adjust the capacity of the destination array:

	      static char *stringCpy(const std::string &str) {
		char *result = reinterpret_cast<char *>(malloc(str.size() + 1));
		strcpy(result, str.data());
		return result;
	      }

       Note: It	cannot guarantee to rewrite every of the path-sensitive	memory
	      allocations.

   Transformation rules	of 'memcpy()'
       It is possible to rewrite the memcpy() and memcpy_s() calls as the fol-
       lowing four functions:  strcpy(), strncpy(),  strcpy_s(),  strncpy_s(),
       where  the  latter  two	are  the safer versions	of the former two.  It
       rewrites	the wchar_t based memory handler functions respectively.

   Rewrite based on the	destination array
        If copy to the	destination array cannot overflow [1] the new function
	 should	be the older copy function (ending with	cpy),  because	it  is
	 more efficient	than the safe version.

        If  copy  to  the destination array can overflow [1] and AreSafeFunc-
	 tionsAvailable	is set to Yes, y or non-zero and it is possible	to ob-
	 tain the capacity of the destination  array  then  the	 new  function
	 could be the safe version (ending with	cpy_s).

        If  the  new  function	 is  could  be	safe version and C++ files are
	 analysed and the destination  array  is  plain	 char/wchar_t  without
	 un/signed then	the length of the destination array can	be omitted.

        If  the new function is could be safe version and the destination ar-
	 ray is	un/signed it needs to be casted	to plain char */wchar_t	*.

       [1] It is possible to overflow:

	      	If the capacity	of the destination array is unknown.

	      	If the given length is equal to	the destination	array's	capac-
		ity.

   Rewrite based on the	length of the source string
        If the	given length is	strlen(source) or equal	length of this expres-
	 sion then the new function should be the older	copy function  (ending
	 with cpy), as it is more efficient than the safe version (ending with
	 cpy_s).

        Otherwise  we	assume	that the programmer wanted to copy 'N' charac-
	 ters, so the new function is ncpy-like	which copies 'N' characters.

   Transformations with	'strlen()' or equal length of this expression
       It transforms the wchar_t based memory and string handler functions re-
       spectively (where only strerror_s does not have wchar_t based alias).

   Memory handler functions
       memcpy Please visit the Transformation rules of 'memcpy()' section.

       memchr Usually there is a C-style cast and it is	needed to be  removed,
       because	the  new  function  strchr's return type is correct. The given
       length is going to be removed.

       memmove If safe functions are available the new function	is  memmove_s,
       which  has a new	second argument	which is the length of the destination
       array, it is adjusted, and the length of	the source  string  is	incre-
       mented by one.  If safe functions are not available the given length is
       incremented by one.

       memmove_s The given length is incremented by one.

   String handler functions
       strerror_s The given length is incremented by one.

       strncmp	If  the	 third	argument is the	first or the second argument's
       length +	1 it has to be truncated without the + 1 operation.

       strxfrm The given length	is incremented by one.

   Options
       WantToUseSafeFunctions
	      An integer non-zero value	specifying if the  target  environment
	      is  considered to	implement '_s' suffixed	memory and string han-
	      dler functions which are safer than older	versions  (e.g.	 'mem-
	      cpy_s()'). The default value is 1.

   bugprone-parent-virtual-call
       Detects	and  fixes calls to grand-...parent virtual methods instead of
       calls to	overridden parent's virtual methods.

	  struct A {
	    int	virtual	foo() {...}
	  };

	  struct B: public A {
	    int	foo() override {...}
	  };

	  struct C: public B {
	    int	foo() override { A::foo(); }
	  //			 ^^^^^^^^
	  // warning: qualified	name A::foo refers to a	member overridden in subclass; did you mean 'B'?  [bugprone-parent-virtual-call]
	  };

   bugprone-posix-return
       Checks  if  any	calls  to  pthread_*  or  posix_*  functions   (except
       posix_openpt) expect negative return values. These functions return ei-
       ther 0 on success or an errno on	failure, which is positive only.

       Example buggy usage looks like:

	  if (posix_fadvise(...) < 0) {

       This  will  never  happen as the	return value is	always non-negative. A
       simple fix could	be:

	  if (posix_fadvise(...) > 0) {

   bugprone-reserved-identifier
       cert-dcl37-c and	cert-dcl51-cpp redirect	here  as  an  alias  for  this
       check.

       Checks  for  usages  of identifiers reserved for	use by the implementa-
       tion.

       The C and C++ standards both reserve the	following names	for such use:

        identifiers that begin	with an	underscore followed  by	 an  uppercase
	 letter;

        identifiers in	the global namespace that begin	with an	underscore.

       The  C standard additionally reserves names beginning with a double un-
       derscore, while the C++ standard	strengthens this to reserve names with
       a double	underscore occurring anywhere.

       Violating the naming rules above	results	in undefined behavior.

	  namespace NS {
	    void __f();	// name	is not allowed in user code
	    using _Int = int; // same with this
	    #define cool__macro	// also	this
	  }
	  int _g(); // disallowed in global namespace only

       The check can also be inverted, i.e. it can be configured to  flag  any
       identifier that is _not_	a reserved identifier. This mode is for	use by
       e.g.   standard	library	implementors, to ensure	they don't infringe on
       the user	namespace.

       This check does not (yet) check for other reserved  names,  e.g.	 macro
       names  identical	 to language keywords, and names specifically reserved
       by language standards, e.g. C++ 'zombie names' and C future library di-
       rections.

       This check corresponds to CERT C	Coding Standard	rule DCL37-C.  Do  not
       declare or define a reserved identifier as well as its C++ counterpart,
       DCL51-CPP. Do not declare or define a reserved identifier.

   Options
       Invert If  non-zero,  inverts  the check, i.e. flags names that are not
	      reserved.	 Default is 0.

       AllowedIdentifiers
	      Semicolon-separated list of names	that the  check	 ignores.  De-
	      fault is an empty	list.

   bugprone-signed-char-misuse
       cert-str34-c  redirects	here  as an alias for this check. For the CERT
       alias, the DiagnoseSignedUnsignedCharComparisons	option is set to 0.

       Finds those signed char -> integer conversions which might  indicate  a
       programming  error.  The	 basic	problem	 with the signed char, that it
       might store the non-ASCII characters as negative	values.	This  behavior
       can  cause a misunderstanding of	the written code both when an explicit
       and when	an implicit conversion happens.

       When the	code contains an explicit signed char ->  integer  conversion,
       the  human programmer probably expects that the converted value matches
       with the	character code (a value	from [0..255]),	 however,  the	actual
       value  is in [-128..127]	interval. To avoid this	kind of	misinterpreta-
       tion, the desired way of	converting from	a signed char  to  an  integer
       value  is converting to unsigned	char first, which stores all the char-
       acters in the positive [0..255] interval	which matches the known	 char-
       acter codes.

       In  case	 of  implicit conversion, the programmer might not actually be
       aware that a conversion happened	and char value is used as an  integer.
       There  are  some	 use cases when	this unawareness might lead to a func-
       tionally	imperfect code.	 For  example,	checking  the  equality	 of  a
       signed  char and	an unsigned char variable is something we should avoid
       in C++ code. During this	comparison, the	two variables are converted to
       integers	which have different  value  ranges.   For  signed  char,  the
       non-ASCII  characters  are  stored  as  a value in [-128..-1] interval,
       while the same characters are stored in the [128..255] interval for  an
       unsigned	char.

       It  depends  on	the  actual  platform whether plain char is handled as
       signed char by default and so it	is caught by this  check  or  not.  To
       change	the   default	behavior   you	can  use  -funsigned-char  and
       -fsigned-char compilation options.

       Currently, this check warns in the following cases: -  signed  char  is
       assigned	 to  an	 integer  variable - signed char and unsigned char are
       compared	with equality/inequality operator - signed char	 is  converted
       to an integer in	the array subscript

       See  also:  STR34-C. Cast characters to unsigned	char before converting
       to larger integer sizes

       A good example from the CERT description	when a char variable  is  used
       to  read	from a file that might contain non-ASCII characters. The prob-
       lem comes up when the code uses the -1 integer value as EOF, while  the
       255  character  code  is	 also stored as	-1 in two's complement form of
       char type.  See a simple	example	of this	bellow.	This  code  stops  not
       only when it reaches the	end of the file, but also when it gets a char-
       acter with the 255 code.

	  #define EOF (-1)

	  int read(void) {
	    char CChar;
	    int	IChar =	EOF;

	    if (readChar(CChar)) {
	      IChar = CChar;
	    }
	    return IChar;
	  }

       A  proper  way to fix the code above is converting the char variable to
       an unsigned char	value first.

	  #define EOF (-1)

	  int read(void) {
	    char CChar;
	    int	IChar =	EOF;

	    if (readChar(CChar)) {
	      IChar = static_cast<unsigned char>(CChar);
	    }
	    return IChar;
	  }

       Another use case	is checking the	equality of two	 char  variables  with
       different  signedness. Inside the non-ASCII value range this comparison
       between a signed	char and an unsigned char always returns false.

	  bool compare(signed char SChar, unsigned char	USChar)	{
	    if (SChar == USChar)
	      return true;
	    return false;
	  }

       The easiest way to fix this kind	of comparison is casting  one  of  the
       arguments, so both arguments will have the same type.

	  bool compare(signed char SChar, unsigned char	USChar)	{
	    if (static_cast<unsigned char>(SChar) == USChar)
	      return true;
	    return false;
	  }

       CharTypdefsToIgnore
	      A	 semicolon-separated  list  of typedef names. In this list, we
	      can list typedefs	for char or signed char, which will be ignored
	      by the check. This is useful when	a typedef introduces an	 inte-
	      ger alias	like sal_Int8 or int8_t. In this case, human misinter-
	      pretation	is not an issue.

       DiagnoseSignedUnsignedCharComparisons
	      When  nonzero,  the check	will warn on signed char/unsigned char
	      comparisons, otherwise these comparisons	are  ignored.  By  de-
	      fault, this option is set	to 1.

   bugprone-sizeof-container
       The check finds usages of sizeof	on expressions of STL container	types.
       Most likely the user wanted to use .size() instead.

       All  class/struct  types	 declared  in  namespace  std::	having a const
       size()  method  are  considered	containers,  with  the	exception   of
       std::bitset and std::array.

       Examples:

	  std::string s;
	  int a	= 47 + sizeof(s); // warning: sizeof() doesn't return the size of the container. Did you mean .size()?

	  int b	= sizeof(std::string); // no warning, probably intended.

	  std::string array_of_strings[10];
	  int c	= sizeof(array_of_strings) / sizeof(array_of_strings[0]); // no	warning, definitely intended.

	  std::array<int, 3> std_array;
	  int d	= sizeof(std_array); //	no warning, probably intended.

   bugprone-sizeof-expression
       The  check finds	usages of sizeof expressions which are most likely er-
       rors.

       The sizeof operator yields the size (in bytes) of  its  operand,	 which
       may  be	an  expression	or the parenthesized name of a type. Misuse of
       this operator may be leading to errors and possible  software  vulnera-
       bilities.

   Suspicious usage of 'sizeof(K)'
       A  common mistake is to query the sizeof	of an integer literal. This is
       equivalent to query the size of its type	(probably int).	The intent  of
       the programmer was probably to simply get the integer and not its size.

	  #define BUFLEN 42
	  char buf[BUFLEN];
	  memset(buf, 0, sizeof(BUFLEN));  // sizeof(42) ==> sizeof(int)

   Suspicious usage of 'sizeof(expr)'
       In cases, where there is	an enum	or integer to represent	a type,	a com-
       mon  mistake  is	to query the sizeof on the integer or enum that	repre-
       sents the type that should be used by sizeof. This results in the  size
       of the integer and not of the type the integer represents:

	  enum data_type {
	    FLOAT_TYPE,
	    DOUBLE_TYPE
	  };

	  struct data {
	    data_type type;
	    void* buffer;
	    data_type get_type() {
	      return type;
	    }
	  };

	  void f(data d, int numElements) {
	    // should be sizeof(float) or sizeof(double), depending on d.get_type()
	    int	numBytes = numElements * sizeof(d.get_type());
	    ...
	  }

   Suspicious usage of 'sizeof(this)'
       The  this  keyword  is  evaluated  to a pointer to an object of a given
       type.  The expression sizeof(this) is returning the size	of a  pointer.
       The  programmer	most  likely wanted the	size of	the object and not the
       size of the pointer.

	  class	Point {
	    [...]
	    size_t size() { return sizeof(this); }  // should probably be sizeof(*this)
	    [...]
	  };

   Suspicious usage of 'sizeof(char*)'
       There is	a subtle difference between declaring a	 string	 literal  with
       char*  A	 = "" and char A[] = "". The first case	has the	type char* in-
       stead of	the aggregate type char[]. Using sizeof	on an object  declared
       with  char* type	is returning the size of a pointer instead of the num-
       ber of characters (bytes) in the	string literal.

	  const	char* kMessage = "Hello	World!";      // const char kMessage[] = "...";
	  void getMessage(char*	buf) {
	    memcpy(buf,	kMessage, sizeof(kMessage));  // sizeof(char*)
	  }

   Suspicious usage of 'sizeof(A*)'
       A common	mistake	is to compute the size of a  pointer  instead  of  its
       pointee.	  These	 cases	may occur because of explicit cast or implicit
       conversion.

	  int A[10];
	  memset(A, 0, sizeof(A	+ 0));

	  struct Point point;
	  memset(point,	0, sizeof(&point));

   Suspicious usage of 'sizeof(...)/sizeof(...)'
       Dividing	sizeof expressions is typically	used to	retrieve the number of
       elements	of an aggregate. This check warns on  incompatible  or	suspi-
       cious cases.

       In  the	following example, the entity has 10-bytes and is incompatible
       with the	type int which has 4 bytes.

	  char buf[] = { 0, 1, 2, 3, 4,	5, 6, 7, 8, 9 };  // sizeof(buf) => 10
	  void getMessage(char*	dst) {
	    memcpy(dst,	buf, sizeof(buf) / sizeof(int));  // sizeof(int) => 4  [incompatible sizes]
	  }

       In the following	example, the expression	 sizeof(Values)	 is  returning
       the  size of char*. One can easily be fooled by its declaration,	but in
       parameter declaration the size '10' is ignored and the function is  re-
       ceiving a char*.

	  char OrderedValues[10] = { 0,	1, 2, 3, 4, 5, 6, 7, 8,	9 };
	  return CompareArray(char Values[10]) {
	    return memcmp(OrderedValues, Values, sizeof(Values)) == 0;	// sizeof(Values) ==> sizeof(char*) [implicit cast to char*]
	  }

   Suspicious 'sizeof' by 'sizeof' expression
       Multiplying sizeof expressions typically	makes no sense and is probably
       a  logic	error. In the following	example, the programmer	used * instead
       of /.

	  const	char kMessage[]	= "Hello World!";
	  void getMessage(char*	buf) {
	    memcpy(buf,	kMessage, sizeof(kMessage) * sizeof(char));  //	 sizeof(kMessage) / sizeof(char)
	  }

       This check may trigger on code using the	arraysize macro. The following
       code is working correctly but should be simplified by  using  only  the
       sizeof operator.

	  extern Object	objects[100];
	  void InitializeObjects() {
	    memset(objects, 0, arraysize(objects) * sizeof(Object));  // sizeof(objects)
	  }

   Suspicious usage of 'sizeof(sizeof(...))'
       Getting the sizeof of a sizeof makes no sense and is typically an error
       hidden through macros.

	  #define INT_SZ sizeof(int)
	  int buf[] = {	42 };
	  void getInt(int* dst)	{
	    memcpy(dst,	buf, sizeof(INT_SZ));  // sizeof(sizeof(int)) is suspicious.
	  }

   Options
       WarnOnSizeOfConstant
	      When  non-zero,  the  check  will	 warn  on  an  expression like
	      sizeof(CONSTANT).	Default	is 1.

       WarnOnSizeOfIntegerExpression
	      When non-zero,  the  check  will	warn  on  an  expression  like
	      sizeof(expr) where the expression	results	in an integer. Default
	      is 0.

       WarnOnSizeOfThis
	      When  non-zero,  the  check  will	 warn  on  an  expression like
	      sizeof(this).  Default is	1.

       WarnOnSizeOfCompareToConstant
	      When non-zero,  the  check  will	warn  on  an  expression  like
	      sizeof(epxr)  <=	k  for a suspicious constant k while k is 0 or
	      greater than 0x8000. Default is 1.

   bugprone-spuriously-wake-up-functions
       Finds cnd_wait, cnd_timedwait, wait, wait_for, or  wait_until  function
       calls  when the function	is not invoked from a loop that	checks whether
       a condition predicate holds or the function has a condition parameter.

       This check corresponds to the CERT C++ Coding Standard rule  CON54-CPP.
       Wrap  functions that can	spuriously wake	up in a	loop.  and CERT	C Cod-
       ing Standard rule CON36-C. Wrap functions that can spuriously  wake  up
       in a loop.

   bugprone-string-constructor
       Finds string constructors that are suspicious and probably errors.

       A  common  mistake is to	swap parameters	to the 'fill' string-construc-
       tor.

       Examples:

	  std::string str('x', 50); // should be str(50, 'x')

       Calling the string-literal constructor with a length  bigger  than  the
       literal is suspicious and adds extra random characters to the string.

       Examples:

	  std::string("test", 200);   // Will include random characters	after "test".

       Creating	 an  empty string from constructors with parameters is consid-
       ered suspicious.	The programmer should use the  empty  constructor  in-
       stead.

       Examples:

	  std::string("test", 0);   // Creation	of an empty string.

   Options
       WarnOnLargeLength
	      When  non-zero,  the  check  will	warn on	a string with a	length
	      greater than LargeLengthThreshold. Default is 1.

       LargeLengthThreshold
	      An integer specifying the	large  length  threshold.  Default  is
	      0x800000.

   bugprone-string-integer-assignment
       The  check  finds assignments of	an integer to std::basic_string<CharT>
       (std::string, std::wstring, etc.). The source of	 the  problem  is  the
       following assignment operator of	std::basic_string<CharT>:

	  basic_string&	operator=( CharT ch );

       Numeric types can be implicitly casted to character types.

	  std::string s;
	  int x	= 5965;
	  s = 6;
	  s = x;

       Use the appropriate conversion functions	or character literals.

	  std::string s;
	  int x	= 5965;
	  s = '6';
	  s = std::to_string(x);

       In order	to suppress false positives, use an explicit cast.

	  std::string s;
	  s = static_cast<char>(6);

   bugprone-string-literal-with-embedded-nul
       Finds  occurrences  of  string  literal with embedded NUL character and
       validates their usage.

   Invalid escaping
       Special characters can be escaped within	 a  string  literal  by	 using
       their  hexadecimal  encoding  like  \x42. A common mistake is to	escape
       them like this \0x42 where the \0 stands	for the	NUL character.

	  const	char* Example[]	= "Invalid character: \0x12 should be \x12";
	  const	char* Bytes[] =	"\x03\0x02\0x01\0x00\0xFF\0xFF\0xFF";

   Truncated literal
       String-like classes can manipulate strings with embedded	 NUL  as  they
       are keeping track of the	bytes and the length. This is not the case for
       a char* (NUL-terminated)	string.

       A  common  mistake  is  to pass a string-literal	with embedded NUL to a
       string constructor expecting a NUL-terminated string. The  bytes	 after
       the first NUL character are truncated.

	  std::string str("abc\0def");	// "def" is truncated
	  str += "\0";			// This	statement is doing nothing
	  if (str == "\0abc") return;	// This	expression is always true

   bugprone-suspicious-enum-usage
       The  checker detects various cases when an enum is probably misused (as
       a bitmask ).

       1. When "ADD" or	"bitwise OR" is	used between two enum which come  from
	  different types and these types value	ranges are not disjoint.

       The  following cases will be investigated only using StrictMode.	We re-
       gard the	enum as	a (suspicious) bitmask if the three  conditions	 below
       are true	at the same time:

        at  most  half	 of  the elements of the enum are non pow-of-2 numbers
	 (because of short enumerations)

        there is another non pow-of-2 number than the	enum  constant	repre-
	 senting  all  choices	(the result "bitwise OR" operation of all enum
	 elements)

        enum type variable/enumconstant is used as an	argument  of  a	 +  or
	 "bitwise OR " operator

       So  whenever  the  non pow-of-2 element is used as a bitmask element we
       diagnose	a misuse and give a warning.

       2. Investigating	the right hand side of += and |= operator.

       3. Check	only the enum value side of a |	and + operator if one of  them
	  is not enum val.

       4. Check	 both  side  of	| or + operator	where the enum values are from
	  the same enum	type.

       Examples:

	  enum { A, B, C };
	  enum { D, E, F = 5 };
	  enum { G = 10, H = 11, I = 12	};

	  unsigned flag;
	  flag =
	      A	|
	      H; // OK,	disjoint value intervals in the	enum types ->probably good use.
	  flag = B | F;	// Warning, have common	values so they are probably misused.

	  // Case 2:
	  enum Bitmask {
	    A =	0,
	    B =	1,
	    C =	2,
	    D =	4,
	    E =	8,
	    F =	16,
	    G =	31 // OK, real bitmask.
	  };

	  enum Almostbitmask {
	    AA = 0,
	    BB = 1,
	    CC = 2,
	    DD = 4,
	    EE = 8,
	    FF = 16,
	    GG // Problem, forgot to initialize.
	  };

	  unsigned flag	= 0;
	  flag |= E; //	OK.
	  flag |=
	      EE; // Warning at	the decl, and note that	it was used here as a bitmask.

   Options
       StrictMode
	      Default value: 0.	 When non-null the  suspicious	bitmask	 usage
	      will  be	investigated  additionally to the different enum usage
	      check.

   bugprone-suspicious-include
       The check detects various cases when an include refers to what  appears
       to  be  an implementation file, which often leads to hard-to-track-down
       ODR violations.

       Examples:

	  #include "Dinosaur.hpp"     // OK, .hpp files	tend not to have definitions.
	  #include "Pterodactyl.h"    // OK, .h	files tend not to have definitions.
	  #include "Velociraptor.cpp" // Warning, filename is suspicious.
	  #include_next	<stdio.c>     // Warning, filename is suspicious.

   Options
       HeaderFileExtensions
	      Default value: ";h;hh;hpp;hxx"  A	 semicolon-separated  list  of
	      filename	extensions  of	header	files (the filename extensions
	      should not contain a  "."	 prefix).  For	extension-less	header
	      files,  use an empty string or leave an empty string between ";"
	      if there are other filename extensions.

       ImplementationFileExtensions
	      Default value: "c;cc;cpp;cxx"  Likewise,	a  semicolon-separated
	      list of filename extensions of implementation files.

   bugprone-suspicious-memset-usage
       This  check finds memset() calls	with potential mistakes	in their argu-
       ments.  Considering the function	as void* memset(void* destination, int
       fill_value, size_t byte_count), the following cases are covered:

       Case 1: Fill value is a character ``'0'``

       Filling up a memory area	with ASCII code	48 characters is  not  custom-
       ary, possibly integer zeroes were intended instead.  The	check offers a
       replacement  of	'0'  with 0. Memsetting	character pointers with	'0' is
       allowed.

       Case 2: Fill value is truncated

       Memset converts	fill_value  to	unsigned  char	before	using  it.  If
       fill_value  is  out  of unsigned	character range, it gets truncated and
       memory will not contain the desired pattern.

       Case 3: Byte count is zero

       Calling memset with a literal zero in its byte_count argument is	likely
       to be unintended	and swapped with fill_value. The check offers to  swap
       these two arguments.

       Corresponding cpplint.py	check name: runtime/memset.

       Examples:

	  void foo() {
	    int	i[5] = {1, 2, 3, 4, 5};
	    int	*ip = i;
	    char c = '1';
	    char *cp = &c;
	    int	v = 0;

	    // Case 1
	    memset(ip, '0', 1);	// suspicious
	    memset(cp, '0', 1);	// OK

	    // Case 2
	    memset(ip, 0xabcd, 1); // fill value gets truncated
	    memset(ip, 0x00, 1);   // OK

	    // Case 3
	    memset(ip, sizeof(int), v);	// zero	length,	potentially swapped
	    memset(ip, 0, 1);		// OK
	  }

   bugprone-suspicious-missing-comma
       String  literals	 placed	 side-by-side  are concatenated	at translation
       phase 6 (after the preprocessor). This feature  is  used	 to  represent
       long string literal on multiple lines.

       For instance, the following declarations	are equivalent:

	  const	char* A[] = "This is a test";
	  const	char* B[] = "This" " is	a "    "test";

       A  common  mistake done by programmers is to forget a comma between two
       string literals in an array initializer list.

	  const	char* Test[] = {
	    "line 1",
	    "line 2"	 // Missing comma!
	    "line 3",
	    "line 4",
	    "line 5"
	  };

       The array contains the string "line 2line3" at offset 1 (i.e. Test[1]).
       Clang won't generate warnings at	compile	time.

       This check may warn incorrectly on cases	like:

	  const	char* SupportedFormat[]	= {
	    "Error %s",
	    "Code " PRIu64,   // May warn here.
	    "Warning %s",
	  };

   Options
       SizeThreshold
	      An unsigned integer specifying the minimum size of a string lit-
	      eral to be considered by the check. Default is 5U.

       RatioThreshold
	      A	string specifying the maximum threshold	ratio [0, 1.0] of sus-
	      picious string literals to be considered.	Default	is ".2".

       MaxConcatenatedTokens
	      An unsigned integer specifying the maximum  number  of  concate-
	      nated tokens.  Default is	5U.

   bugprone-suspicious-semicolon
       Finds  most  instances  of stray	semicolons that	unexpectedly alter the
       meaning of the code. More specifically, it looks	for if,	while, for and
       for-range statements whose body is a single semicolon,  and  then  ana-
       lyzes  the  context of the code (e.g. indentation) in an	attempt	to de-
       termine whether that is intentional.

	  if (x	< y);
	  {
	    x++;
	  }

       Here the	body of	the if statement consists of only the semicolon	at the
       end of the first	line, and x will be incremented	regardless of the con-
       dition.

	  while	((line = readLine(file)) != NULL);
	    processLine(line);

       As a result of this code, processLine() will only be called once,  when
       the  while loop with the	empty body exits with line == NULL. The	inden-
       tation of the code indicates the	intention of the programmer.

	  if (x	>= y);
	  x -= y;

       While the indentation does not imply any	nesting, there	is  simply  no
       valid  reason  to  have	an if statement	with an	empty body (but	it can
       make sense for a	loop). So this check issues a  warning	for  the  code
       above.

       To solve	the issue remove the stray semicolon or	in case	the empty body
       is  intentional,	 reflect  this using code indentation or put the semi-
       colon in	a new line. For	example:

	  while	(readWhitespace());
	    Token t = readNextToken();

       Here the	second line is indented	in a way  that	suggests  that	it  is
       meant  to  be the body of the while loop	- whose	body is	in fact	empty,
       because of the semicolon	at the end of the first	line.

       Either remove the indentation from the second line:

	  while	(readWhitespace());
	  Token	t = readNextToken();

       ... or move the semicolon from the end of the first line	to a new line:

	  while	(readWhitespace())
	    ;

	    Token t = readNextToken();

       In this case the	check will assume that you know	what  you  are	doing,
       and will	not raise a warning.

   bugprone-suspicious-string-compare
       Find  suspicious	 usage	of  runtime string comparison functions.  This
       check is	valid in C and C++.

       Checks for calls	with implicit comparator and  proposed	to  explicitly
       add it.

	  if (strcmp(...))	 // Implicitly compare to zero
	  if (!strcmp(...))	 // Won't warn
	  if (strcmp(...) != 0)	 // Won't warn

       Checks  that  compare  function	results	 (i,e, strcmp) are compared to
       valid constant. The resulting value is

	  <  0	  when lower than,
	  >  0	  when greater than,
	  == 0	  when equals.

       A common	mistake	is to compare the result to 1 or -1.

	  if (strcmp(...) == -1)  // Incorrect usage of	the returned value.

       Additionally, the check warns if	the results value is  implicitly  cast
       to  a  suspicious  non-integer  type.  It's happening when the returned
       value is	used in	a wrong	context.

	  if (strcmp(...) < 0.)	 // Incorrect usage of the returned value.

   Options
       WarnOnImplicitComparison
	      When non-zero, the check will warn on implicit comparison. 1  by
	      default.

       WarnOnLogicalNotComparison
	      When  non-zero, the check	will warn on logical not comparison. 0
	      by default.

       StringCompareLikeFunctions
	      A	string specifying  the	comma-separated	 names	of  the	 extra
	      string  comparison  functions.  Default is an empty string.  The
	      check will detect	the  following	string	comparison  functions:
	      __builtin_memcmp,	    __builtin_strcasecmp,    __builtin_strcmp,
	      __builtin_strncasecmp,  __builtin_strncmp,  _mbscmp,  _mbscmp_l,
	      _mbsicmp,	 _mbsicmp_l,  _mbsnbcmp, _mbsnbcmp_l, _mbsnbicmp, _mb-
	      snbicmp_l,   _mbsncmp,   _mbsncmp_l,   _mbsnicmp,	  _mbsnicmp_l,
	      _memicmp,	 _memicmp_l,  _stricmp,	 _stricmp_l,  _strnicmp, _str-
	      nicmp_l, _wcsicmp, _wcsicmp_l, _wcsnicmp,	_wcsnicmp_l,  lstrcmp,
	      lstrcmpi,	memcmp,	memicmp, strcasecmp, strcmp, strcmpi, stricmp,
	      strncasecmp, strncmp, strnicmp, wcscasecmp, wcscmp, wcsicmp, wc-
	      sncmp, wcsnicmp, wmemcmp.

   bugprone-swapped-arguments
       Finds potentially swapped arguments by looking at implicit conversions.

   bugprone-terminating-continue
       Detects do while	loops with a condition always evaluating to false that
       have  a continue	statement, as this continue terminates the loop	effec-
       tively.

	  void f() {
	  do {
		// some	code
	    continue; // terminating continue
	    // some other code
	  } while(false);

   bugprone-throw-keyword-missing
       Warns about a potentially missing throw keyword.	If a temporary	object
       is  created,  but  the object's type derives from (or is	the same as) a
       class that has 'EXCEPTION', 'Exception' or 'exception' in its name,  we
       can assume that the programmer's	intention was to throw that object.

       Example:

	  void f(int i)	{
	    if (i < 0) {
	      // Exception is created but is not thrown.
	      std::runtime_error("Unexpected argument");
	    }
	  }

   bugprone-too-small-loop-variable
       Detects	those  for  loops that have a loop variable with a "too	small"
       type which means	this type can't	represent all values which are part of
       the iteration range.

	  int main() {
	    long size =	294967296l;
	    for	(short i = 0; i	< size;	++i) {}
	  }

       This for	loop is	an infinite loop because the short type	 can't	repre-
       sent all	values in the [0..size]	interval.

       In  a  real use case size means a container's size which	depends	on the
       user input.

	  int doSomething(const	std::vector& items) {
	    for	(short i = 0; i	< items.size();	++i) {}
	  }

       This algorithm works for	small amount of	 objects,  but	will  lead  to
       freeze for a a larger user input.

       MagnitudeBitsUpperLimit
	      Upper limit for the magnitude bits of the	loop variable. If it's
	      set  the check filters out those catches in which	the loop vari-
	      able's type has more  magnitude  bits  as	 the  specified	 upper
	      limit.  The  default value is 16.	 For example, if the user sets
	      this option to 31	(bits),	then a 32-bit unsigend int is  ignored
	      by  the  check, however a	32-bit int is not (A 32-bit signed int
	      has 31 magnitude bits).

	  int main() {
	    long size =	294967296l;
	    for	(unsigned i = 0; i < size; ++i)	{} // no warning with MagnitudeBitsUpperLimit =	31 on a	system where unsigned is 32-bit
	    for	(int i = 0; i <	size; ++i) {} // warning with MagnitudeBitsUpperLimit =	31 on a	system where int is 32-bit
	  }

   bugprone-undefined-memory-manipulation
       Finds calls of memory manipulation  functions  memset(),	 memcpy()  and
       memmove()  on  not TriviallyCopyable objects resulting in undefined be-
       havior.

   bugprone-undelegated-constructor
       Finds creation of temporary objects in constructors that	 look  like  a
       function	call to	another	constructor of the same	class.

       The  user  most	likely	meant  to use a	delegating constructor or base
       class initializer.

   bugprone-unhandled-self-assignment
       cert-oop54-cpp redirects	here as	an alias for this check. For the  CERT
       alias, the WarnOnlyIfThisHasSuspiciousField option is set to 0.

       Finds  user-defined  copy assignment operators which do not protect the
       code against self-assignment either by checking self-assignment explic-
       itly or using the copy-and-swap or the copy-and-move method.

       By default, this	check searches	only  those  classes  which  have  any
       pointer or C array field	to avoid false positives. In case of a pointer
       or  a  C	array, it's likely that	self-copy assignment breaks the	object
       if the copy assignment operator was not written with care.

       See also: OOP54-CPP. Gracefully handle self-copy	assignment

       A copy assignment operator must prevent that self-copy assignment ruins
       the object state. A typical use case is when the	class  has  a  pointer
       field  and  the copy assignment operator	first releases the pointed ob-
       ject and	then tries to assign it:

	  class	T {
	  int* p;

	  public:
	    T(const T &rhs) : p(rhs.p ?	new int(*rhs.p)	: nullptr) {}
	    ~T() { delete p; }

	    // ...

	    T& operator=(const T &rhs) {
	      delete p;
	      p	= new int(*rhs.p);
	      return *this;
	    }
	  };

       There are two common C++	patterns to avoid this problem.	The  first  is
       the self-assignment check:

	  class	T {
	  int* p;

	  public:
	    T(const T &rhs) : p(rhs.p ?	new int(*rhs.p)	: nullptr) {}
	    ~T() { delete p; }

	    // ...

	    T& operator=(const T &rhs) {
	      if(this == &rhs)
		return *this;

	      delete p;
	      p	= new int(*rhs.p);
	      return *this;
	    }
	  };

       The  second  one	is the copy-and-swap method when we create a temporary
       copy (using the copy constructor) and then swap this  temporary	object
       with this:

	  class	T {
	  int* p;

	  public:
	    T(const T &rhs) : p(rhs.p ?	new int(*rhs.p)	: nullptr) {}
	    ~T() { delete p; }

	    // ...

	    void swap(T	&rhs) {
	      using std::swap;
	      swap(p, rhs.p);
	    }

	    T& operator=(const T &rhs) {
	      T(rhs).swap(*this);
	      return *this;
	    }
	  };

       There  is  a  third  pattern  which  is	less common. Let's call	it the
       copy-and-move method when we create a temporary copy  (using  the  copy
       constructor)  and  then	move  this temporary object into this (needs a
       move assignment operator):

	  class	T {
	  int* p;

	  public:
	    T(const T &rhs) : p(rhs.p ?	new int(*rhs.p)	: nullptr) {}
	    ~T() { delete p; }

	    // ...

	    T& operator=(const T &rhs) {
	      T	t = rhs;
	      *this = std::move(t);
	      return *this;
	    }

	    T& operator=(T &&rhs) {
	      p	= rhs.p;
	      rhs.p = nullptr;
	      return *this;
	    }
	  };

       WarnOnlyIfThisHasSuspiciousField
	      When non-zero, the check will warn only if the  container	 class
	      of  the  copy  assignment	 operator  has	any  suspicious	fields
	      (pointer or C array). This option	is set to 1 by default.

   bugprone-unused-raii
       Finds temporaries that look like	RAII objects.

       The canonical example for this is a scoped lock.

	  {
	    scoped_lock(&global_mutex);
	    critical_section();
	  }

       The destructor of the scoped_lock is called before the critical_section
       is entered, leaving it unprotected.

       We apply	a number of heuristics to reduce the false positive  count  of
       this check:

        Ignore	 code  expanded	from macros. Testing frameworks	make heavy use
	 of this.

        Ignore	types with trivial destructors.	They are very unlikely	to  be
	 RAII objects and there's no difference	when they are deleted.

        Ignore	objects	at the end of a	compound statement (doesn't change be-
	 havior).

        Ignore	objects	returned from a	call.

   bugprone-unused-return-value
       Warns  on  unused  function return values. The checked functions	can be
       configured.

   Options
       CheckedFunctions
	      Semicolon-separated list of  functions  to  check.  Defaults  to
	      ::std::async;::std::launder;::std::remove;::std::re-
	      move_if;::std::unique;::std::unique_ptr::release;::std::ba-
	      sic_string::empty;::std::vector::empty.	This  means  that  the
	      calls to following functions are checked by default:

	      	std::async(). Not using	the return value makes the  call  syn-
		chronous.

	      	std::launder().	 Not using the return value usually means that
		the function interface was misunderstood  by  the  programmer.
		Only the returned pointer is "laundered", not the argument.

	      	std::remove(),	std::remove_if()  and  std::unique().  The re-
		turned iterator	indicates the  boundary	 between  elements  to
		keep  and  elements  to	be removed. Not	using the return value
		means that the information about which elements	to  remove  is
		lost.

	      	std::unique_ptr::release().  Not  using	 the  return value can
		lead to	resource leaks if the same pointer isn't  stored  any-
		where  else.  Often, ignoring the release() return value indi-
		cates that the programmer confused the function	with reset().

	      	std::basic_string::empty() and std::vector::empty(). Not using
		the return value often indicates that the programmer  confused
		the function with clear().

   bugprone-use-after-move
       Warns if	an object is used after	it has been moved, for example:

	  std::string str = "Hello, world!\n";
	  std::vector<std::string> messages;
	  messages.emplace_back(std::move(str));
	  std::cout << str;

       The last	line will trigger a warning that str is	used after it has been
       moved.

       The check does not trigger a warning if the object is reinitialized af-
       ter the move and	before the use.	For example, no	warning	will be	output
       for this	code:

	  messages.emplace_back(std::move(str));
	  str =	"Greetings, stranger!\n";
	  std::cout << str;

       The check takes control flow into account. A warning is only emitted if
       the  use	 can  be  reached from the move. This means that the following
       code does not produce a warning:

	  if (condition) {
	    messages.emplace_back(std::move(str));
	  } else {
	    std::cout << str;
	  }

       On the other hand, the following	code does produce a warning:

	  for (int i = 0; i < 10; ++i) {
	    std::cout << str;
	    messages.emplace_back(std::move(str));
	  }

       (The use-after-move happens on the second iteration of the loop.)

       In some cases, the check	may not	be able	to detect  that	 two  branches
       are mutually exclusive. For example (assuming that i is an int):

	  if (i	== 1) {
	    messages.emplace_back(std::move(str));
	  }
	  if (i	== 2) {
	    std::cout << str;
	  }

       In this case, the check will erroneously	produce	a warning, even	though
       it is not possible for both the move and	the use	to be executed.

       An erroneous warning can	be silenced by reinitializing the object after
       the move:

	  if (i	== 1) {
	    messages.emplace_back(std::move(str));
	    str	= "";
	  }
	  if (i	== 2) {
	    std::cout << str;
	  }

       Subsections below explain more precisely	what exactly the check consid-
       ers to be a move, use, and reinitialization.

   Unsequenced moves, uses, and	reinitializations
       In  many	 cases,	 C++  does  not	make any guarantees about the order in
       which sub-expressions of	a statement are	evaluated. This	means that  in
       code like the following,	it is not guaranteed whether the use will hap-
       pen before or after the move:

	  void f(int i,	std::vector<int> v);
	  std::vector<int> v = { 1, 2, 3 };
	  f(v[1], std::move(v));

       In  this	 kind  of situation, the check will note that the use and move
       are unsequenced.

       The check will also take	sequencing rules into account when  reinitial-
       izations	 occur in the same statement as	moves or uses. A reinitializa-
       tion is only considered to reinitialize a variable if it	is  guaranteed
       to be evaluated after the move and before the use.

   Move
       The  check  currently  only considers calls of std::move	on local vari-
       ables or	function parameters. It	does not check moves of	 member	 vari-
       ables or	global variables.

       Any  call  of  std::move	on a variable is considered to cause a move of
       that variable, even if the result of std::move  is  not	passed	to  an
       rvalue reference	parameter.

       This  means  that  the  check will flag a use-after-move	even on	a type
       that does not define a move constructor or  move	 assignment  operator.
       This  is	 intentional.	Developers may use std::move on	such a type in
       the expectation that the	type will add move semantics in	the future. If
       such a std::move	has the	potential to cause a use-after-move,  we  want
       to  warn	 about	it  even if the	type does not implement	move semantics
       yet.

       Furthermore, if the result of std::move is passed to an	rvalue	refer-
       ence parameter, this will always	be considered to cause a move, even if
       the  function that consumes this	parameter does not move	from it, or if
       it does so only conditionally. For example, in the following situation,
       the check will assume that a move always	takes place:

	  std::vector<std::string> messages;
	  void f(std::string &&str) {
	    // Only remember the message if it isn't empty.
	    if (!str.empty()) {
	      messages.emplace_back(std::move(str));
	    }
	  }
	  std::string str = "";
	  f(std::move(str));

       The check will assume that the last line	causes a move, even though, in
       this particular case, it	does not. Again, this is intentional.

       When analyzing the order	in which  moves,  uses	and  reinitializations
       happen  (see  section  Unsequenced moves, uses, and reinitializations),
       the move	is assumed to occur in whichever function the  result  of  the
       std::move is passed to.

   Use
       Any  occurrence	of  the	 moved variable	that is	not a reinitialization
       (see below) is considered to be a use.

       An  exception  to   this	  are	objects	  of   type   std::unique_ptr,
       std::shared_ptr	and  std::weak_ptr,  which  have defined move behavior
       (objects	of these classes are guaranteed	to be empty  after  they  have
       been  moved  from).  Therefore, an object of these classes will only be
       considered to be	used if	it is dereferenced, i.e. if operator*,	opera-
       tor-> or	operator[] (in the case	of std::unique_ptr<T []>) is called on
       it.

       If  multiple  uses  occur  after	 a  move,  only	 the first of these is
       flagged.

   Reinitialization
       The check considers a variable to be  reinitialized  in	the  following
       cases:

	   The	variable occurs	on the left-hand side of an assignment.

	   The	 variable  is  passed  to a function as	a non-const pointer or
	    non-const lvalue reference.	(It is assumed that the	 variable  may
	    be an out-parameter	for the	function.)

	   clear()  or	assign() is called on the variable and the variable is
	    of one of  the  standard  container	 types	basic_string,  vector,
	    deque,  forward_list,  list,  set,	map,  multiset,	 multimap, un-
	    ordered_set,  unordered_map,  unordered_multiset,	unordered_mul-
	    timap.

	   reset()  is	 called	 on  the  variable and the variable is of type
	    std::unique_ptr, std::shared_ptr or	std::weak_ptr.

	   A member function marked  with  the	 [[clang::reinitializes]]  at-
	    tribute is called on the variable.

       If  the variable	in question is a struct	and an individual member vari-
       able of that struct is written to, the check does not consider this  to
       be  a  reinitialization -- even if, eventually, all member variables of
       the struct are written to. For example:

	  struct S {
	    std::string	str;
	    int	i;
	  };
	  S s =	{ "Hello, world!\n", 42	};
	  S s_other = std::move(s);
	  s.str	= "Lorem ipsum";
	  s.i =	99;

       The check will not consider s to	be reinitialized after the last	 line;
       instead,	 the  line  that assigns to s.str will be flagged as a use-af-
       ter-move.  This is intentional as  this	pattern	 of  reinitializing  a
       struct  is  error-prone.	 For example, if an additional member variable
       is added	to S, it is easy to forget to  add  the	 reinitialization  for
       this  additional	 member.  Instead, it is safer to assign to the	entire
       struct in one go, and this will also avoid the use-after-move warning.

   bugprone-virtual-near-miss
       Warn if a function is a near miss (ie. the name is very similar and the
       function	signature is the same) to  a  virtual  function	 from  a  base
       class.

       Example:

	  struct Base {
	    virtual void func();
	  };

	  struct Derived : Base	{
	    virtual funk();
	    // warning:	'Derived::funk'	has a similar name and the same	signature as virtual method 'Base::func'; did you mean to override it?
	  };

   cert-con36-c
       The     cert-con36-c	check	  is	 an    alias,	 please	   see
       bugprone-spuriously-wake-up-functions for more information.

   cert-con54-cpp
       The    cert-con54-cpp	check	 is    an    alias,	please	   see
       bugprone-spuriously-wake-up-functions for more information.

   cert-dcl03-c
       The  cert-dcl03-c  check	is an alias, please see	misc-static-assert for
       more information.

   cert-dcl16-c
       The    cert-dcl16-c    check    is     an     alias,	please	   see
       readability-uppercase-literal-suffix for	more information.

   cert-dcl21-cpp
       This  check flags postfix operator++ and	operator-- declarations	if the
       return type is not a const object. This also warns if the  return  type
       is a reference type.

       The  object  returned  by  a postfix increment or decrement operator is
       supposed	to be a	snapshot of the	object's value prior to	 modification.
       With  such  an  implementation, any modifications made to the resulting
       object from calling operator++(int) would be modifying a	temporary  ob-
       ject.  Thus, such an implementation of a	postfix	increment or decrement
       operator	should instead return a	const object,  prohibiting  accidental
       mutation	 of  a	temporary object.  Similarly, it is unexpected for the
       postfix operator	to return a reference to its previous state,  and  any
       subsequent modifications	would be operating on a	stale object.

       This  check  corresponds	to the CERT C++	Coding Standard	recommendation
       DCL21-CPP. Overloaded postfix increment and decrement operators	should
       return  a  const	 object. However, all of the CERT recommendations have
       been removed from public	view, and so their justification for  the  be-
       havior of this check requires an	account	on their wiki to view.

   cert-dcl37-c
       The     cert-dcl37-c	check	  is	 an    alias,	 please	   see
       bugprone-reserved-identifier for	more information.

   cert-dcl50-cpp
       This check flags	all function definitions  (but	not  declarations)  of
       C-style variadic	functions.

       This  check corresponds to the CERT C++ Coding Standard rule DCL50-CPP.
       Do not define a C-style variadic	function.

   cert-dcl51-cpp
       The    cert-dcl51-cpp	check	 is    an    alias,	please	   see
       bugprone-reserved-identifier for	more information.

   cert-dcl54-cpp
       The     cert-dcl54-cpp	  check	   is	 an    alias,	 please	   see
       misc-new-delete-overloads for more information.

   cert-dcl58-cpp
       Modification of the std or posix	namespace can result in	undefined  be-
       havior.	This check warns for such modifications.

       Examples:

	  namespace std	{
	    int	x; // May cause	undefined behavior.
	  }

       This  check corresponds to the CERT C++ Coding Standard rule DCL58-CPP.
       Do not modify the standard namespaces.

   cert-dcl59-cpp
       The    cert-dcl59-cpp	check	 is    an    alias,	please	   see
       google-build-namespaces for more	information.

   cert-env33-c
       This  check  flags calls	to system(), popen(), and _popen(), which exe-
       cute a command processor. It does not flag calls	 to  system()  with  a
       null pointer argument, as such a	call checks for	the presence of	a com-
       mand processor but does not actually attempt to execute a command.

       This  check  corresponds	to the CERT C Coding Standard rule ENV33-C. Do
       not call	system().

   cert-err09-cpp
       The    cert-err09-cpp	check	 is    an    alias,	please	   see
       misc-throw-by-value-catch-by-reference for more information.

       This  check  corresponds	to the CERT C++	Coding Standard	recommendation
       ERR09-CPP. Throw	anonymous temporaries. However,	all of the CERT	recom-
       mendations have been removed from public	view, and so their  justifica-
       tion  for  the behavior of this check requires an account on their wiki
       to view.

   cert-err34-c
       This check flags	calls to string-to-number conversion functions that do
       not verify the validity of the conversion, such as atoi()  or  scanf().
       It  does	not flag calls to strtol(), or other, related conversion func-
       tions that do perform better error checking.

	  #include <stdlib.h>

	  void func(const char *buff) {
	    int	si;

	    if (buff) {
	      si = atoi(buff); /* 'atoi' used to convert a string to an	integer, but function will
				   not report conversion errors; consider using	'strtol' instead. */
	    } else {
	      /* Handle	error */
	    }
	  }

       This check corresponds to the CERT C Coding Standard rule ERR34-C.  De-
       tect errors when	converting a string to a number.

   cert-err52-cpp
       This check flags	all call expressions involving setjmp()	and longjmp().

       This  check corresponds to the CERT C++ Coding Standard rule ERR52-CPP.
       Do not use setjmp() or longjmp().

   cert-err58-cpp
       This check flags	all static or thread_local variable declarations where
       the initializer for the object may throw	an exception.

       This check corresponds to the CERT C++ Coding Standard rule  ERR58-CPP.
       Handle all exceptions thrown before main() begins executing.

   cert-err60-cpp
       This  check  flags  all throw expressions where the exception object is
       not nothrow copy	constructible.

       This check corresponds to the CERT C++ Coding Standard rule  ERR60-CPP.
       Exception objects must be nothrow copy constructible.

   cert-err61-cpp
       The     cert-err61-cpp	  check	   is	 an    alias,	 please	   see
       misc-throw-by-value-catch-by-reference for more information.

   cert-fio38-c
       The    cert-fio38-c    check    is     an     alias,	please	   see
       misc-non-copyable-objects for more information.

   cert-flp30-c
       This  check flags for loops where the induction expression has a	float-
       ing-point type.

       This check corresponds to the CERT C Coding Standard rule  FLP30-C.  Do
       not use floating-point variables	as loop	counters.

   cert-mem57-cpp
       This  check  flags  uses	of default operator new	where the type has ex-
       tended alignment	(an alignment greater than the fundamental alignment).
       (The default operator new is guaranteed to provide the  correct	align-
       ment  if	 the  requested	 alignment is less or equal to the fundamental
       alignment).  Only cases are detected (by	design)	where the operator new
       is not user-defined and is not a	placement new (the reason is  that  in
       these cases we assume that the user provided the	correct	memory alloca-
       tion).

       This  check corresponds to the CERT C++ Coding Standard rule MEM57-CPP.
       Avoid using default operator new	for over-aligned types.

   cert-msc30-c
       The cert-msc30-c	check is an alias, please see cert-msc50-cpp for  more
       information.

   cert-msc32-c
       The  cert-msc32-c check is an alias, please see cert-msc51-cpp for more
       information.

   cert-msc50-cpp
       Pseudorandom number generators use mathematical algorithms to produce a
       sequence	of numbers with	good statistical properties, but  the  numbers
       produced	 are  not  genuinely  random. The std::rand() function takes a
       seed (number), runs a mathematical operation on it and returns the  re-
       sult.  By  manipulating	the  seed  the result can be predictable. This
       check warns for the usage of std::rand().

   cert-msc51-cpp
       This check flags	all pseudo-random number engines, engine  adaptor  in-
       stantiations  and srand() when initialized or seeded with default argu-
       ment, constant expression or any	user-configurable type.	 Pseudo-random
       number  engines	seeded with a predictable value	may cause vulnerabili-
       ties e.g. in security protocols.	 This is a  CERT  security  rule,  see
       MSC51-CPP.  Ensure  your	random number generator	is properly seeded and
       MSC32-C.	Properly seed pseudorandom number generators.

       Examples:

	  void foo() {
	    std::mt19937 engine1; // Diagnose, always generate the same	sequence
	    std::mt19937 engine2(1); //	Diagnose
	    engine1.seed(); // Diagnose
	    engine2.seed(1); //	Diagnose

	    std::time_t	t;
	    engine1.seed(std::time(&t)); // Diagnose, system time might	be controlled by user

	    int	x = atoi(argv[1]);
	    std::mt19937 engine3(x);  // Will not warn
	  }

   Options
       DisallowedSeedTypes
	      A	comma-separated	list of	the type names which  are  disallowed.
	      Default values are time_t, std::time_t.

   cert-oop11-cpp
       The     cert-oop11-cpp	  check	   is	 an    alias,	 please	   see
       performance-move-constructor-init for more information.

       This check corresponds to the CERT C++ Coding  Standard	recommendation
       OOP11-CPP.  Do  not copy-initialize members or base classes from	a move
       constructor. However, all of the	CERT recommendations have been removed
       from public view, and so	their justification for	the behavior  of  this
       check requires an account on their wiki to view.

   cert-oop54-cpp
       The     cert-oop54-cpp	  check	   is	 an    alias,	 please	   see
       bugprone-unhandled-self-assignment for more information.

   cert-oop57-cpp
	  Flags	use of the C standard library  functions  memset,  memcpy  and
	  memcmp and similar derivatives on non-trivial	types.

   Options
       MemSetNames
	      Specify  extra  functions	to flag	that act similarily to memset.
	      Specify names in a semicolon  delimited  list.   Default	is  an
	      empty  string.   The  check will detect the following functions:
	      memset, std::memset.

       MemCpyNames
	      Specify extra functions to flag that act similarily  to  memcpy.
	      Specify  names  in  a  semicolon	delimited list.	 Default is an
	      empty string.  The check will detect  the	 following  functions:
	      std::memcpy, memcpy, std::memmove, memmove, std::strcpy, strcpy,
	      memccpy, stpncpy,	strncpy.

       MemCmpNames
	      Specify  extra  functions	to flag	that act similarily to memcmp.
	      Specify names in a semicolon  delimited  list.   Default	is  an
	      empty  string.   The  check will detect the following functions:
	      std::memcmp, memcmp, std::strcmp,	strcmp,	strncmp.

       This check corresponds to the CERT C++ Coding Standard rule  OOP57-CPP.
       Prefer  special member functions	and overloaded operators to C Standard
       Library functions.

   cert-oop58-cpp
       Finds assignments to the	copied object and its direct or	indirect  mem-
       bers in copy constructors and copy assignment operators.

       This  check  corresponds	 to the	CERT C Coding Standard rule OOP58-CPP.
       Copy operations must not	mutate the source object.

   cert-pos44-c
       The    cert-pos44-c    check    is     an     alias,	please	   see
       bugprone-bad-signal-to-kill-thread for more information.

   cert-str34-c
       The     cert-str34-c	check	  is	 an    alias,	 please	   see
       bugprone-signed-char-misuse for more information.

   clang-analyzer-core.CallAndMessage
       The clang-analyzer-core.CallAndMessage check is an  alias,  please  see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-core.DivideZero
       The  clang-analyzer-core.DivideZero check is an alias, please see Clang
       Static Analyzer Available Checkers for more information.

   clang-analyzer-core.DynamicTypePropagation
       Generate	dynamic	type information

   clang-analyzer-core.NonNullParamChecker
       The clang-analyzer-core.NonNullParamChecker check is an	alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-core.NullDereference
       The  clang-analyzer-core.NullDereference	 check is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-core.StackAddressEscape
       The clang-analyzer-core.StackAddressEscape check	is  an	alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-core.UndefinedBinaryOperatorResult
       The   clang-analyzer-core.UndefinedBinaryOperatorResult	 check	is  an
       alias, please see Clang Static Analyzer Available Checkers for more in-
       formation.

   clang-analyzer-core.VLASize
       The clang-analyzer-core.VLASize check is	an  alias,  please  see	 Clang
       Static Analyzer Available Checkers for more information.

   clang-analyzer-core.uninitialized.ArraySubscript
       The clang-analyzer-core.uninitialized.ArraySubscript check is an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-core.uninitialized.Assign
       The clang-analyzer-core.uninitialized.Assign check is an	alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-core.uninitialized.Branch
       The  clang-analyzer-core.uninitialized.Branch check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-core.uninitialized.CapturedBlockVariable
       Check for blocks	that capture uninitialized values

   clang-analyzer-core.uninitialized.UndefReturn
       The clang-analyzer-core.uninitialized.UndefReturn check	is  an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-cplusplus.InnerPointer
       Check for inner pointers	of C++ containers used after re/deallocation

   clang-analyzer-cplusplus.Move
       The clang-analyzer-cplusplus.Move check is an alias, please  see	 Clang
       Static Analyzer Available Checkers for more information.

   clang-analyzer-cplusplus.NewDelete
       The  clang-analyzer-cplusplus.NewDelete	check  is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-cplusplus.NewDeleteLeaks
       The clang-analyzer-cplusplus.NewDeleteLeaks check is an	alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-deadcode.DeadStores
       The  clang-analyzer-deadcode.DeadStores	check  is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-nullability.NullPassedToNonnull
       The clang-analyzer-nullability.NullPassedToNonnull check	is  an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-nullability.NullReturnedFromNonnull
       The  clang-analyzer-nullability.NullReturnedFromNonnull	check  is   an
       alias, please see Clang Static Analyzer Available Checkers for more in-
       formation.

   clang-analyzer-nullability.NullableDereferenced
       The  clang-analyzer-nullability.NullableDereferenced check is an	alias,
       please see Clang	Static Analyzer	Available Checkers for	more  informa-
       tion.

   clang-analyzer-nullability.NullablePassedToNonnull
       The   clang-analyzer-nullability.NullablePassedToNonnull	 check	is  an
       alias, please see Clang Static Analyzer Available Checkers for more in-
       formation.

   clang-analyzer-nullability.NullableReturnedFromNonnull
       Warns when a nullable pointer is	returned  from	a  function  that  has
       _Nonnull	return type.

   clang-analyzer-optin.cplusplus.UninitializedObject
       The   clang-analyzer-optin.cplusplus.UninitializedObject	 check	is  an
       alias, please see Clang Static Analyzer Available Checkers for more in-
       formation.

   clang-analyzer-optin.cplusplus.VirtualCall
       The  clang-analyzer-optin.cplusplus.VirtualCall	check  is  an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-optin.mpi.MPI-Checker
       The clang-analyzer-optin.mpi.MPI-Checker	check is an alias, please  see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-optin.osx.OSObjectCStyleCast
       Checker for C-style casts of OSObjects

   clang-analyzer-optin.osx.cocoa.localizability.EmptyLocalizationCon-
       textChecker
       The clang-analyzer-optin.osx.cocoa.localizability.EmptyLocalizationCon-
       textChecker  check is an	alias, please see Clang	Static Analyzer	Avail-
       able Checkers for more information.

   clang-analyzer-optin.osx.cocoa.localizability.NonLocalizedStringChecker
       The	   clang-analyzer-optin.osx.cocoa.localizability.NonLocalized-
       StringChecker  check  is	 an  alias,  please  see Clang Static Analyzer
       Available Checkers for more information.

   clang-analyzer-optin.performance.GCDAntipattern
       Check for performance anti-patterns when	using Grand Central Dispatch

   clang-analyzer-optin.performance.Padding
       Check for excessively padded structs.

   clang-analyzer-optin.portability.UnixAPI
       Finds implementation-defined behavior in	UNIX/Posix functions

   clang-analyzer-osx.API
       The clang-analyzer-osx.API check	is an alias, please see	 Clang	Static
       Analyzer	Available Checkers for more information.

   clang-analyzer-osx.MIG
       Find violations of the Mach Interface Generator calling convention

   clang-analyzer-osx.NumberObjectConversion
       Check  for  erroneous  conversions of objects representing numbers into
       numbers

   clang-analyzer-osx.OSObjectRetainCount
       Check for leaks and improper reference count management for OSObject

   clang-analyzer-osx.ObjCProperty
       Check for proper	uses of	Objective-C properties

   clang-analyzer-osx.SecKeychainAPI
       The clang-analyzer-osx.SecKeychainAPI check is  an  alias,  please  see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.AtSync
       The clang-analyzer-osx.cocoa.AtSync check is an alias, please see Clang
       Static Analyzer Available Checkers for more information.

   clang-analyzer-osx.cocoa.AutoreleaseWrite
       Warn  about  potentially	 crashing writes to autoreleasing objects from
       different autoreleasing pools in	Objective-C

   clang-analyzer-osx.cocoa.ClassRelease
       The clang-analyzer-osx.cocoa.ClassRelease check is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.Dealloc
       The clang-analyzer-osx.cocoa.Dealloc check  is  an  alias,  please  see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.IncompatibleMethodTypes
       The clang-analyzer-osx.cocoa.IncompatibleMethodTypes check is an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-osx.cocoa.Loops
       Improved	modeling of loops using	Cocoa collection types

   clang-analyzer-osx.cocoa.MissingSuperCall
       Warn about Objective-C methods that lack	a necessary call to super

   clang-analyzer-osx.cocoa.NSAutoreleasePool
       The  clang-analyzer-osx.cocoa.NSAutoreleasePool	check  is  an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-osx.cocoa.NSError
       The clang-analyzer-osx.cocoa.NSError check  is  an  alias,  please  see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.NilArg
       The clang-analyzer-osx.cocoa.NilArg check is an alias, please see Clang
       Static Analyzer Available Checkers for more information.

   clang-analyzer-osx.cocoa.NonNilReturnValue
       Model the APIs that are guaranteed to return a non-nil value

   clang-analyzer-osx.cocoa.ObjCGenerics
       The clang-analyzer-osx.cocoa.ObjCGenerics check is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.RetainCount
       The  clang-analyzer-osx.cocoa.RetainCount check is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.RunLoopAutoreleaseLeak
       Check for leaked	memory in autorelease pools that will never be drained

   clang-analyzer-osx.cocoa.SelfInit
       The clang-analyzer-osx.cocoa.SelfInit check is  an  alias,  please  see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.SuperDealloc
       The clang-analyzer-osx.cocoa.SuperDealloc check is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.UnusedIvars
       The  clang-analyzer-osx.cocoa.UnusedIvars check is an alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-osx.cocoa.VariadicMethodTypes
       The clang-analyzer-osx.cocoa.VariadicMethodTypes	 check	is  an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-osx.coreFoundation.CFError
       The clang-analyzer-osx.coreFoundation.CFError check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-osx.coreFoundation.CFNumber
       The  clang-analyzer-osx.coreFoundation.CFNumber	check  is  an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-osx.coreFoundation.CFRetainRelease
       The  clang-analyzer-osx.coreFoundation.CFRetainRelease  check   is   an
       alias, please see Clang Static Analyzer Available Checkers for more in-
       formation.

   clang-analyzer-osx.coreFoundation.containers.OutOfBounds
       The  clang-analyzer-osx.coreFoundation.containers.OutOfBounds  check is
       an alias, please	see Clang Static Analyzer Available Checkers for  more
       information.

   clang-analyzer-osx.coreFoundation.containers.PointerSizedValues
       The     clang-analyzer-osx.coreFoundation.containers.PointerSizedValues
       check is	an alias, please see Clang Static Analyzer Available  Checkers
       for more	information.

   clang-analyzer-security.FloatLoopCounter
       The  clang-analyzer-security.FloatLoopCounter check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling
       The    clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHan-
       dling  check  is	 an  alias, please see Clang Static Analyzer Available
       Checkers	for more information.

   clang-analyzer-security.insecureAPI.UncheckedReturn
       The  clang-analyzer-security.insecureAPI.UncheckedReturn	 check	is  an
       alias, please see Clang Static Analyzer Available Checkers for more in-
       formation.

   clang-analyzer-security.insecureAPI.bcmp
       The  clang-analyzer-security.insecureAPI.bcmp check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-security.insecureAPI.bcopy
       The clang-analyzer-security.insecureAPI.bcopy check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-security.insecureAPI.bzero
       The clang-analyzer-security.insecureAPI.bzero check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-security.insecureAPI.getpw
       The clang-analyzer-security.insecureAPI.getpw check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-security.insecureAPI.gets
       The clang-analyzer-security.insecureAPI.gets check is an	alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-security.insecureAPI.mkstemp
       The  clang-analyzer-security.insecureAPI.mkstemp	 check	is  an	alias,
       please see Clang	Static Analyzer	Available Checkers for	more  informa-
       tion.

   clang-analyzer-security.insecureAPI.mktemp
       The   clang-analyzer-security.insecureAPI.mktemp	 check	is  an	alias,
       please see Clang	Static Analyzer	Available Checkers for	more  informa-
       tion.

   clang-analyzer-security.insecureAPI.rand
       The  clang-analyzer-security.insecureAPI.rand check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-security.insecureAPI.strcpy
       The  clang-analyzer-security.insecureAPI.strcpy	check  is  an	alias,
       please  see  Clang Static Analyzer Available Checkers for more informa-
       tion.

   clang-analyzer-security.insecureAPI.vfork
       The clang-analyzer-security.insecureAPI.vfork check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-unix.API
       The clang-analyzer-unix.API check is an alias, please see Clang	Static
       Analyzer	Available Checkers for more information.

   clang-analyzer-unix.Malloc
       The clang-analyzer-unix.Malloc check is an alias, please	see Clang Sta-
       tic Analyzer Available Checkers for more	information.

   clang-analyzer-unix.MallocSizeof
       The  clang-analyzer-unix.MallocSizeof  check  is	 an  alias, please see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-unix.MismatchedDeallocator
       The clang-analyzer-unix.MismatchedDeallocator check is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-unix.Vfork
       The clang-analyzer-unix.Vfork check is an alias,	please see Clang  Sta-
       tic Analyzer Available Checkers for more	information.

   clang-analyzer-unix.cstring.BadSizeArg
       The  clang-analyzer-unix.cstring.BadSizeArg  check  is an alias,	please
       see Clang Static	Analyzer Available Checkers for	more information.

   clang-analyzer-unix.cstring.NullArg
       The clang-analyzer-unix.cstring.NullArg check is	an alias,  please  see
       Clang Static Analyzer Available Checkers	for more information.

   clang-analyzer-valist.CopyToSelf
       Check for va_lists which	are copied onto	itself.

   clang-analyzer-valist.Uninitialized
       Check for usages	of uninitialized (or already released) va_lists.

   clang-analyzer-valist.Unterminated
       Check for va_lists which	are not	released by a va_end call.

   cppcoreguidelines-avoid-c-arrays
       The  cppcoreguidelines-avoid-c-arrays  check  is	 an  alias, please see
       modernize-avoid-c-arrays	for more information.

   cppcoreguidelines-avoid-goto
       The usage of goto for control flow is error prone  and  should  be  re-
       placed  with looping constructs.	Only forward jumps in nested loops are
       accepted.

       This check implements ES.76 from	the CppCoreGuidelines and  6.3.1  from
       High Integrity C++.

       For more	information on why to avoid programming	with goto you can read
       the famous paper	A Case against the GO TO Statement..

       The  check  diagnoses  goto  for	backward jumps in every	language mode.
       These should be replaced	with C/C++ looping constructs.

	  // Bad, handwritten for loop.
	  int i	= 0;
	  // Jump label	for the	loop
	  loop_start:
	  do_some_operation();

	  if (i	< 100) {
	    ++i;
	    goto loop_start;
	  }

	  // Better
	  for(int i = 0; i < 100; ++i)
	    do_some_operation();

       Modern C++ needs	goto only to jump out of nested	loops.

	  for(int i = 0; i < 100; ++i) {
	    for(int j =	0; j < 100; ++j) {
	      if (i * j	> 500)
		goto early_exit;
	    }
	  }

	  early_exit:
	  some_operation();

       All other uses of goto are diagnosed in C++.

   cppcoreguidelines-avoid-magic-numbers
       The cppcoreguidelines-avoid-magic-numbers check is an alias, please see
       readability-magic-numbers for more information.

   cppcoreguidelines-avoid-non-const-global-variables
       Finds non-const global variables	as described in	I.2 of C++ Core	Guide-
       lines	 <https://github.com/isocpp/CppCoreGuidelines/blob/master/Cpp-
       CoreGuidelines.md#Ri-global>   .	   As	R.6  of	 C++  Core  Guidelines
       <https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuide-
       lines.md#Rr-global> is a	duplicate of rule  I.2	it  also  covers  that
       rule.

	  char a;  // Warns!
	  const	char b =  0;

	  namespace some_namespace
	  {
	      char c;  // Warns!
	      const char d = 0;
	  }

	  char * c_ptr1	= &some_namespace::c;  // Warns!
	  char *const c_const_ptr = &some_namespace::c;	 // Warns!
	  char & c_reference = some_namespace::c;  // Warns!

	  class	Foo  //	No Warnings inside Foo,	only namespace scope is	covered
	  {
	  public:
	      char e = 0;
	      const char f = 0;
	  protected:
	      char g = 0;
	  private:
	      char h = 0;
	  };

       Variables:  a, c, c_ptr1, c_ptr2, c_const_ptr and c_reference, will all
       generate	warnings since they are	either:	a globally accessible variable
       and non-const, a	 pointer  or  reference	 providing  global  access  to
       non-const data or both.

   cppcoreguidelines-c-copy-assignment-signature
       The  cppcoreguidelines-c-copy-assignment-signature  check  is an	alias,
       please see misc-unconventional-assign-operator for more information.

   cppcoreguidelines-explicit-virtual-functions
       The cppcoreguidelines-explicit-virtual-functions	 check	is  an	alias,
       please see modernize-use-override for more information.

   cppcoreguidelines-init-variables
       Checks  whether	there are local	variables that are declared without an
       initial value. These may	lead to	unexpected behaviour  if  there	 is  a
       code path that reads the	variable before	assigning to it.

       Only  integers, booleans, floats, doubles and pointers are checked. The
       fix option initializes all detected values with the value of  zero.  An
       exception is float and double types, which are initialized to NaN.

       As an example a function	that looks like	this:

	  void function() {
	    int	x;
	    char *txt;
	    double d;

	    // Rest of the function.
	  }

       Would be	rewritten to look like this:

	  #include <math.h>

	  void function() {
	    int	x = 0;
	    char *txt =	nullptr;
	    double d = NAN;

	    // Rest of the function.
	  }

   Options
       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

       MathHeader
	      A	 string	specifying the header to include to get	the definition
	      of NAN. Default is math.h.

   cppcoreguidelines-interfaces-global-init
       This check flags	initializers of	globals	that  access  extern  objects,
       and therefore can lead to order-of-initialization problems.

       This  rule  is  part of the "Interfaces"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Ri-global-init

       Note  that  currently  this  does not flag calls	to non-constexpr func-
       tions, and therefore globals could still	 be  accessed  from  functions
       themselves.

   cppcoreguidelines-macro-usage
       Finds  macro  usage  that is considered problematic because better lan-
       guage constructs	exist for the task.

       The relevant sections in	the C++	Core  Guidelines  are  Enum.1,	ES.30,
       ES.31 and ES.33.

   Options
       AllowedRegexp
	      A	 regular  expression to	filter allowed macros. For example DE-
	      BUG*|LIBTORRENT*|TORRENT*|UNI*  could  be	 applied   to	filter
	      libtorrent.  Default value is ^DEBUG_*.

       CheckCapsOnly
	      Boolean  flag  to	warn on	all macros except those	with CAPS_ONLY
	      names.  This option is intended to  ease	introduction  of  this
	      check into older code bases. Default value is 0/false.

       IgnoreCommandLineMacros
	      Boolean  flag  to	 toggle	 ignoring command-line-defined macros.
	      Default value is 1/true.

   cppcoreguidelines-narrowing-conversions
       Checks for silent narrowing conversions,	e.g: int i =  0;  i  +=	 0.1;.
       While  the  issue is obvious in this former example, it might not be so
       in the following: void MyClass::f(double	d) { int_member_ += d; }.

       This rule is part of the	"Expressions and statements"  profile  of  the
       C++ Core	Guidelines, corresponding to rule ES.46. See

       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es46-avoid-lossy-narrowing-truncating-arithmetic-conversions.

       We enforce only part of the guideline, more specifically, we flag nar-
       rowing conversions from:

	      	an integer to a	narrower integer (e.g. char to unsigned	char),

	      	an  integer  to	 a  narrower  floating-point (e.g. uint64_t to
		float),

	      	a floating-point to an integer (e.g. double to int),

	      	a floating-point to a narrower floating-point (e.g. double  to
		float)	if  WarnOnFloatingPointNarrowingConversion  Option  is
		set.

       This check will flag:

	      	All narrowing conversions that are not marked by  an  explicit
		cast  (c-style	or  static_cast). For example: int i = 0; i +=
		0.1;, void f(int); f(0.1);,

	      	All applications of binary operators with a narrowing  conver-
		sions.	For example: int i; i+=	0.1;.

   Options
       WarnOnFloatingPointNarrowingConversion
	      When  non-zero,  the check will warn on narrowing	floating point
	      conversion (e.g. double to float). 1 by default.

       PedanticMode
	      When non-zero, the check will warn on assigning a	floating point
	      constant to an integer value even	if the floating	point value is
	      exactly representable in the destination	type  (e.g.  int  i  =
	      1.0;).  0	by default.

   FAQ
	   What does "narrowing conversion from 'int' to 'float'" mean?

       An  IEEE754  Floating  Point number can represent all integer values in
       the range [-2^PrecisionBits, 2^PrecisionBits]  where  PrecisionBits  is
       the number of bits in the mantissa.

       For  float  this	would be [-2^23, 2^23],	where int can represent	values
       in the range [-2^31, 2^31-1].

	   What does "implementation-defined" mean?

       You may have encountered	messages like "narrowing conversion from  'un-
       signed int' to signed type 'int'	is implementation-defined".  The C/C++
       standard	 does  not mandate twos	complement for signed integers,	and so
       the compiler is free to define what the semantics are for converting an
       unsigned	integer	to signed integer.  Clang's  implementation  uses  the
       twos complement format.

   cppcoreguidelines-no-malloc
       This check handles C-Style memory management using malloc(), realloc(),
       calloc()	 and  free().  It warns	about its use and tries	to suggest the
       use of an appropriate RAII object.  Furthermore,	it can	be  configured
       to  check  against a user-specified list	of functions that are used for
       memory management (e.g. posix_memalign()).  See C++ Core	Guidelines.

       There is	no attempt made	to provide fix-it hints, since manual resource
       management isn't	easily transformed automatically into RAII.

	  // Warns each	of the following lines.
	  // Containers	like std::vector or std::string	should be used.
	  char*	some_string = (char*) malloc(sizeof(char) * 20);
	  char*	some_string = (char*) realloc(sizeof(char) * 30);
	  free(some_string);

	  int* int_array = (int*) calloc(30, sizeof(int));

	  // Rather use	a smartpointer or stack	variable.
	  struct some_struct* s	= (struct some_struct*)	malloc(sizeof(struct some_struct));

   Options
       Allocations
	      Semicolon-separated list of fully	qualified names	of memory  al-
	      location functions.  Defaults to ::malloc;::calloc.

       Deallocations
	      Semicolon-separated  list	of fully qualified names of memory al-
	      location functions.  Defaults to ::free.

       Reallocations
	      Semicolon-separated list of fully	qualified names	of memory  al-
	      location functions.  Defaults to ::realloc.

   cppcoreguidelines-non-private-member-variables-in-classes
       The  cppcoreguidelines-non-private-member-variables-in-classes check is
       an alias, please	see  misc-non-private-member-variables-in-classes  for
       more information.

   cppcoreguidelines-owning-memory
       This check implements the type-based semantics of gsl::owner<T*>, which
       allows  static  analysis	 on code, that uses raw	pointers to handle re-
       sources like dynamic memory, but	won't introduce	RAII concepts.

       The relevant sections in	the C++	Core Guidelines	are  I.11,  C.33,  R.3
       and GSL.Views The definition of a gsl::owner<T*>	is straight forward

	  namespace gsl	{ template <typename T>	owner =	T; }

       It is therefore simple to introduce the owner even without using	an im-
       plementation of the Guideline Support Library.

       All checks are purely type based	and not	(yet) flow sensitive.

       The  following examples will demonstrate	the correct and	incorrect ini-
       tializations of owners, assignment is handled the same way.  Note  that
       both new	and malloc()-like resource functions are considered to produce
       resources.

	  // Creating an owner with factory functions is checked.
	  gsl::owner<int*> function_that_returns_owner() { return gsl::owner<int*>(new int(42)); }

	  // Dynamic memory must be assigned to	an owner
	  int* Something = new int(42);	// BAD,	will be	caught
	  gsl::owner<int*> Owner = new int(42);	// Good
	  gsl::owner<int*> Owner = new int[42];	// Good	as well

	  // Returned owner must be assigned to	an owner
	  int* Something = function_that_returns_owner(); // Bad, factory function
	  gsl::owner<int*> Owner = function_that_returns_owner(); // Good, result lands	in owner

	  // Something not a resource or owner should not be assigned to owners
	  int Stack = 42;
	  gsl::owner<int*> Owned = &Stack; // Bad, not a resource assigned

       In  the	case  of dynamic memory	as resource, only gsl::owner<T*> vari-
       ables are allowed to be deleted.

	  // Example Bad, non-owner as resource	handle,	will be	caught.
	  int* NonOwner	= new int(42); // First	warning	here, since new	must land in an	owner
	  delete NonOwner; // Second warning here, since only owners are allowed to be deleted

	  // Example Good, Ownership correctly stated
	  gsl::owner<int*> Owner = new int(42);	// Good
	  delete Owner;	// Good	as well, statically enforced, that only	owners get deleted

       The check will  furthermore  ensure,  that  functions,  that  expect  a
       gsl::owner<T*> as argument get called with either a gsl::owner<T*> or a
       newly created resource.

	  void expects_owner(gsl::owner<int*> o) { delete o; }

	  // Bad Code
	  int NonOwner = 42;
	  expects_owner(&NonOwner); // Bad, will get caught

	  // Good Code
	  gsl::owner<int*> Owner = new int(42);
	  expects_owner(Owner);	// Good
	  expects_owner(new int(42)); // Good as well, recognized created resource

	  // Port legacy code for better resource-safety
	  gsl::owner<FILE*> File = fopen("my_file.txt",	"rw+");
	  FILE*	BadFile	= fopen("another_file.txt", "w"); // Bad, warned

	  // ... use the file

	  fclose(File);	// Ok, File is annotated as 'owner<>'
	  fclose(BadFile); // BadFile is not an	'owner<>', will	be warned

   Options
       LegacyResourceProducers
	      Semicolon-separated  list	 of  fully  qualified  names of	legacy
	      functions	  that	 create	  resources   but   cannot   introduce
	      gsl::owner<>.    Defaults	  to  ::malloc;::aligned_alloc;::real-
	      loc;::calloc;::fopen;::freopen;::tmpfile.

       LegacyResourceConsumers
	      Semicolon-separated list of  fully  qualified  names  of	legacy
	      functions	 expecting  resource  owners  as pointer arguments but
	      cannot  introduce	 gsl::owner<>.	 Defaults  to	::free;::real-
	      loc;::freopen;::fclose.

   Limitations
       Using gsl::owner<T*> in a typedef or alias is not handled correctly.

	  using	heap_int = gsl::owner<int*>;
	  heap_int allocated = new int(42); // False positive!

       The  gsl::owner<T*> is declared as a templated type alias.  In template
       functions and classes, like in the example below,  the  information  of
       the  type  aliases gets lost. Therefore using gsl::owner<T*> in a heavy
       templated code base might lead to false positives.

       Known code constructs that do not get diagnosed correctly are:

        std::exchange

        std::vector<gsl::owner<T*>>

	  // This template function works as expected. Type information	doesn't	get lost.
	  template <typename T>
	  void delete_owner(gsl::owner<T*> owned_object) {
	    delete owned_object; // Everything alright
	  }

	  gsl::owner<int*> function_that_returns_owner() { return gsl::owner<int*>(new int(42)); }

	  // Type deduction does not work for auto variables.
	  // This is caught by the check and will be noted accordingly.
	  auto OwnedObject = function_that_returns_owner(); // Type of OwnedObject will	be int*

	  // Problematic function template that	looses the typeinformation on owner
	  template <typename T>
	  void bad_template_function(T some_object) {
	    // This line will trigger the warning, that	a non-owner is assigned	to an owner
	    gsl::owner<T*> new_owner = some_object;
	  }

	  // Calling the function with an owner	still yields a false positive.
	  bad_template_function(gsl::owner<int*>(new int(42)));

	  // The same issue occurs with	templated classes like the following.
	  template <typename T>
	  class	OwnedValue {
	  public:
	    const T getValue() const { return _val; }
	  private:
	    T _val;
	  };

	  // Code, that	yields a false positive.
	  OwnedValue<gsl::owner<int*>> Owner(new int(42)); // Type deduction yield T ->	int *
	  // False positive, getValue returns int* and not gsl::owner<int*>
	  gsl::owner<int*> OwnedInt = Owner.getValue();

       Another limitation of the current implementation	is only	the type based
       checking.  Suppose you have code	like the following:

	  // Two owners	with assigned resources
	  gsl::owner<int*> Owner1 = new	int(42);
	  gsl::owner<int*> Owner2 = new	int(42);

	  Owner2 = Owner1; // Conceptual Leak of initial resource of Owner2!
	  Owner1 = nullptr;

       The semantic of a gsl::owner<T*>	is mostly like	a  std::unique_ptr<T>,
       therefore  assignment of	two gsl::owner<T*> is considered a move, which
       requires	that the resource Owner2 must have been	 released  before  the
       assignment.   This  kind	of condition could be caught in	later improve-
       ments of	this check with	flowsensitive analysis.	Currently,  the	 Clang
       Static  Analyzer	 catches this bug for dynamic memory, but not for gen-
       eral types of resources.

   cppcoreguidelines-pro-bounds-array-to-pointer-decay
       This check flags	all array to pointer decays.

       Pointers	should not be used as arrays.  span<T>	is  a  bounds-checked,
       safe alternative	to using pointers to access arrays.

       This rule is part of the	"Bounds	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-bounds-decay.

   cppcoreguidelines-pro-bounds-constant-array-index
       This check flags	all array subscript expressions	on static  arrays  and
       std::arrays that	either do not have a constant integer expression index
       or  are	out  of	bounds (for std::array). For out-of-bounds checking of
       static arrays, see the -Warray-bounds Clang diagnostic.

       This rule is part of the	"Bounds	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-bounds-arrayindex.

   Options
       GslHeader
	      The  check  can generate fixes after this	option has been	set to
	      the name of the  include	file  that  contains  gsl::at(),  e.g.
	      "gsl/gsl.h".

       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

   cppcoreguidelines-pro-bounds-pointer-arithmetic
       This check flags	all usage of pointer arithmetic, because it could lead
       to  an  invalid	pointer. Subtraction of	two pointers is	not flagged by
       this check.

       Pointers	should only refer to single objects, and pointer arithmetic is
       fragile and easy	to get wrong. span<T> is a bounds-checked,  safe  type
       for accessing arrays of data.

       This rule is part of the	"Bounds	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-bounds-arithmetic.

   cppcoreguidelines-pro-type-const-cast
       This check flags	all uses of const_cast in C++ code.

       Modifying a variable that was declared  const  is  undefined  behavior,
       even with const_cast.

       This  rule  is part of the "Type	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-type-constcast.

   cppcoreguidelines-pro-type-cstyle-cast
       This  check  flags  all use of C-style casts that perform a static_cast
       downcast, const_cast, or	reinterpret_cast.

       Use of these casts can violate type safety and cause the	program	to ac-
       cess a variable that is actually	of type	X to be	accessed as if it were
       of an unrelated type Z. Note that a C-style (T)expression cast means to
       perform the first of the	following that is possible:  a	const_cast,  a
       static_cast,  a	static_cast  followed  by  a  const_cast,  a  reinter-
       pret_cast, or a reinterpret_cast	followed by a  const_cast.  This  rule
       bans (T)expression only when used to perform an unsafe cast.

       This  rule  is part of the "Type	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-type-cstylecast.

   cppcoreguidelines-pro-type-member-init
       The  check  flags user-defined constructor definitions that do not ini-
       tialize all fields that would be	left in	an undefined state by  default
       construction,   e.g.   builtins,	 pointers  and	record	types  without
       user-provided default constructors containing at	least one  such	 type.
       If  these fields	aren't initialized, the	constructor will leave some of
       the memory in an	undefined state.

       For C++11 it suggests fixes to add  in-class  field  initializers.  For
       older  versions	it inserts the field initializers into the constructor
       initializer list. It will also initialize any direct base classes  that
       need to be zeroed in the	constructor initializer	list.

       The  check  takes assignment of fields in the constructor body into ac-
       count but generates false positives for fields initialized  in  methods
       invoked in the constructor body.

       The  check  also	 flags	variables with automatic storage duration that
       have record types without a user-provided constructor and are not  ini-
       tialized.  The  suggested fix is	to zero	initialize the variable	via {}
       for C++11 and beyond or = {} for	older language versions.

   Options
       IgnoreArrays
	      If set to	non-zero, the check will not warn about	array  members
	      that  are	 not zero-initialized during construction. For perfor-
	      mance critical code, it  may  be	important  to  not  initialize
	      fixed-size array members.	Default	is 0.

       UseAssignment
	      If  set to non-zero, the check will provide fix-its with literal
	      initializers ( int i = 0;	) instead of curly braces (  int  i{};
	      ).

       This  rule  is part of the "Type	safety"	profile	of the C++ Core	Guide-
       lines,	    corresponding	to	 rule	    Type.6.	   See
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-type-memberinit.

   cppcoreguidelines-pro-type-reinterpret-cast
       This check flags	all uses of reinterpret_cast in	C++ code.

       Use of these casts can violate type safety and cause the	program	to ac-
       cess a variable that is actually	of type	X to be	accessed as if it were
       of an unrelated type Z.

       This  rule  is part of the "Type	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-type-reinterpretcast.

   cppcoreguidelines-pro-type-static-cast-downcast
       This  check  flags  all	usages	of  static_cast, where a base class is
       casted to a derived class. In those cases, a fix-it is provided to con-
       vert the	cast to	a dynamic_cast.

       Use of these casts can violate type safety and cause the	program	to ac-
       cess a variable that is actually	of type	X to be	accessed as if it were
       of an unrelated type Z.

       This rule is part of the	"Type safety" profile of the C++  Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-type-downcast.

   cppcoreguidelines-pro-type-union-access
       This check flags	all access to members of unions. Passing unions	 as  a
       whole is	not flagged.

       Reading	from a union member assumes that member	was the	last one writ-
       ten, and	writing	to a union member assumes another member with  a  non-
       trivial	destructor  had	its destructor called. This is fragile because
       it cannot generally be enforced to be safe in the language and  so  re-
       lies on programmer discipline to	get it right.

       This  rule  is part of the "Type	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-type-unions.

   cppcoreguidelines-pro-type-vararg
       This  check  flags all calls to c-style vararg functions	and all	use of
       va_arg.

       To allow	for SFINAE use of vararg functions, a call is not flagged if a
       literal 0 is passed as the only vararg argument.

       Passing to varargs assumes the correct type will	be read. This is frag-
       ile because it cannot generally be enforced to be safe in the  language
       and so relies on	programmer discipline to get it	right.

       This  rule  is part of the "Type	safety"	profile	of the C++ Core	Guide-
       lines,								   see
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Pro-type-varargs.

   cppcoreguidelines-slicing
       Flags slicing of	member variables or vtable. Slicing happens when copy-
       ing a derived object into a base	object:	the members of the derived ob-
       ject  (both member variables and	virtual	member functions) will be dis-
       carded. This can	be misleading especially for member function  slicing,
       for example:

	  struct B { int a; virtual int	f(); };
	  struct D : B { int b;	int f()	override; };

	  void use(B b)	{  // Missing reference, intended?
	    b.f();  // Calls B::f.
	  }

	  D d;
	  use(d);  // Slice.

       See   the   relevant   C++   Core   Guidelines  sections	 for  details:
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#es63-dont-slice
       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c145-access-polymorphic-objects-through-pointers-and-references

   cppcoreguidelines-special-member-functions
       The check finds classes where some but not all of  the  special	member
       functions are defined.

       By default the compiler defines a copy constructor, copy	assignment op-
       erator,	move constructor, move assignment operator and destructor. The
       default can be suppressed by explicit user-definitions.	The  relation-
       ship between which functions will be suppressed by definitions of other
       functions  is complicated and it	is advised that	all five are defaulted
       or explicitly defined.

       Note that defining a function with = delete is considered to be a defi-
       nition.

       This rule is part of the	"Constructors, assignments,  and  destructors"
       profile of the C++ Core Guidelines, corresponding to rule C.21. See

       https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#c21-if-you-define-or-delete-any-default-operation-define-or-delete-them-all.

   Options
       AllowSoleDefaultDtor
	      When  set	 to  1 (default	is 0), this check doesn't flag classes
	      with a sole, explicitly defaulted	 destructor.  An  example  for
	      such a class is:

		 struct	A {
		   virtual ~A()	= default;
		 };

       AllowMissingMoveFunctions
	      When  set	 to  1 (default	is 0), this check doesn't flag classes
	      which define no move operations at all. It still	flags  classes
	      which define only	one of either move constructor or move assign-
	      ment  operator.  With  this  option enabled, the following class
	      won't be flagged:

		 struct	A {
		   A(const A&);
		   A& operator=(const A&);
		   ~A();
		 };

       AllowMissingMoveFunctionsWhenCopyIsDeleted
	      When set to 1 (default is	0), this check	doesn't	 flag  classes
	      which define deleted copy	operations but don't define move oper-
	      ations.  This  flags  is	related	 to  Google  C++  Style	 Guide
	      https://google.github.io/styleguide/cppguide.html#Copyable_Movable_Types.
	      With this	option enabled,	the following class won't be flagged:

		 struct	A {
		   A(const A&) = delete;
		   A& operator=(const A&) = delete;
		   ~A();
		 };

   darwin-avoid-spinlock
       Finds usages of OSSpinlock, which is deprecated due to potential	 live-
       lock problems.

       This check will detect following	function invocations:

        OSSpinlockLock

        OSSpinlockTry

        OSSpinlockUnlock

       The   corresponding   information  about	 the  problem  of  OSSpinlock:
       https://blog.postmates.com/why-spinlocks-are-bad-on-ios-b69fc5221058

   darwin-dispatch-once-nonstatic
       Finds declarations  of  dispatch_once_t	variables  without  static  or
       global  storage.	 The behavior of using dispatch_once_t predicates with
       automatic or dynamic storage is undefined by libdispatch, and should be
       avoided.

       It is a common pattern to have functions	initialize internal static  or
       global  data  once  when	 the  function runs, but programmers have been
       known to	miss the static	on the dispatch_once_t predicate,  leading  to
       an uninitialized	flag value at the mercy	of the stack.

       Programmers  have  also been known to make dispatch_once_t variables be
       members of structs or classes, with the intent to lazily	 perform  some
       expensive  struct  or  class  member initialization only	once; however,
       this violates the libdispatch requirements.

       See the discussion section of Apple's dispatch_once  documentation  for
       more information.

   fuchsia-default-arguments-calls
       Warns if	a function or method is	called with default arguments.

       For example, given the declaration:

	  int foo(int value = 5) { return value; }

       A  function  call expression that uses a	default	argument will be diag-
       nosed.  Calling it without defaults will	not cause a warning:

	  foo();  // warning
	  foo(0); // no	warning

       See	the	 features      disallowed      in      Fuchsia	    at
       https://fuchsia.googlesource.com/zircon/+/master/docs/cxx.md

   fuchsia-default-arguments-declarations
       Warns if	a function or method is	declared with default parameters.

       For example, the	declaration:

	  int foo(int value = 5) { return value; }

       will cause a warning.

       See	the	 features      disallowed      in      Fuchsia	    at
       https://fuchsia.googlesource.com/zircon/+/master/docs/cxx.md

   fuchsia-header-anon-namespaces
       The  fuchsia-header-anon-namespaces  check  is  an  alias,  please  see
       google-build-namespace for more information.

   fuchsia-multiple-inheritance
       Warns  if a class inherits from multiple	classes	that are not pure vir-
       tual.

       For example, declaring a	class that  inherits  from  multiple  concrete
       classes is disallowed:

	  class	Base_A {
	  public:
	    virtual int	foo() {	return 0; }
	  };

	  class	Base_B {
	  public:
	    virtual int	bar() {	return 0; }
	  };

	  // Warning
	  class	Bad_Child1 : public Base_A, Base_B {};

       A class that inherits from a pure virtual is allowed:

	  class	Interface_A {
	  public:
	    virtual int	foo() =	0;
	  };

	  class	Interface_B {
	  public:
	    virtual int	bar() =	0;
	  };

	  // No	warning
	  class	Good_Child1 : public Interface_A, Interface_B {
	    virtual int	foo() override { return	0; }
	    virtual int	bar() override { return	0; }
	  };

       See	the	 features      disallowed      in      Fuchsia	    at
       https://fuchsia.googlesource.com/zircon/+/master/docs/cxx.md

   fuchsia-overloaded-operator
       Warns if	an operator is overloaded, except for the assignment (copy and
       move) operators.

       For example:

	  int operator+(int);	  // Warning

	  B &operator=(const B &Other);	 // No warning
	  B &operator=(B &&Other) // No	warning

       See	the	 features      disallowed      in      Fuchsia	    at
       https://fuchsia.googlesource.com/zircon/+/master/docs/cxx.md

   fuchsia-statically-constructed-objects
       Warns  if  global,  non-trivial	objects	 with  static storage are con-
       structed, unless	the object is statically initialized with a  constexpr
       constructor or has no explicit constructor.

       For example:

	  class	A {};

	  class	B {
	  public:
	    B(int Val) : Val(Val) {}
	  private:
	    int	Val;
	  };

	  class	C {
	  public:
	    C(int Val) : Val(Val) {}
	    constexpr C() : Val(0) {}

	  private:
	    int	Val;
	  };

	  static A a;	      // No warning, as	there is no explicit constructor
	  static C c(0);      // No warning, as	constructor is constexpr

	  static B b(0);      // Warning, as constructor is not	constexpr
	  static C c2(0, 1);  // Warning, as constructor is not	constexpr

	  static int i;	      // No warning, as	it is trivial

	  extern int get_i();
	  static C(get_i())   // Warning, as the constructor is	dynamically initialized

       See	the	 features      disallowed      in      Fuchsia	    at
       https://fuchsia.googlesource.com/zircon/+/master/docs/cxx.md

   fuchsia-trailing-return
       Functions that have trailing returns are	disallowed, except  for	 those
       using  decltype specifiers and lambda with otherwise unutterable	return
       types.

       For example:

	  // No	warning
	  int add_one(const int	arg) { return arg; }

	  // Warning
	  auto get_add_one() ->	int (*)(const int) {
	    return add_one;
	  }

       Exceptions are made for lambdas and decltype specifiers:

	  // No	warning
	  auto lambda =	[](double x, double y) -> double {return x + y;};

	  // No	warning
	  template <typename T1, typename T2>
	  auto fn(const	T1 &lhs, const T2 &rhs)	-> decltype(lhs	+ rhs) {
	    return lhs + rhs;
	  }

       See	the	 features      disallowed      in      Fuchsia	    at
       https://fuchsia.googlesource.com/zircon/+/master/docs/cxx.md

   fuchsia-virtual-inheritance
       Warns if	classes	are defined with virtual inheritance.

       For example, classes should not be defined with virtual inheritance:

	  class	B : public virtual A {};   // warning

       See	the	 features      disallowed      in      Fuchsia	    at
       https://fuchsia.googlesource.com/zircon/+/master/docs/cxx.md

   google-build-explicit-make-pair
       Check that make_pair's template arguments are deduced.

       G++ 4.6 in C++11	mode fails badly if make_pair's	template arguments are
       specified explicitly, and such use isn't	intended in any	case.

       Corresponding cpplint.py	check name: build/explicit_make_pair.

   google-build-namespaces
       cert-dcl59-cpp redirects	here  as  an  alias  for  this	check.	 fuch-
       sia-header-anon-namespaces redirects here as an alias for this check.

       Finds anonymous namespaces in headers.

       https://google.github.io/styleguide/cppguide.html#Namespaces

       Corresponding cpplint.py	check name: build/namespaces.

   Options
       HeaderFileExtensions
	      A	 comma-separated  list	of filename extensions of header files
	      (the filename extensions should not include "." prefix). Default
	      is "h,hh,hpp,hxx".  For header files without an  extension,  use
	      an  empty	 string	 (if there are no other	desired	extensions) or
	      leave an empty element in	the list. e.g.,	"h,hh,hpp,hxx,"	 (note
	      the trailing comma).

   google-build-using-namespace
       Finds using namespace directives.

       The check implements the	following rule of the Google C++ Style Guide:
	  You may not use a using-directive to make all	names from a namespace
	  available.

	  // Forbidden -- This pollutes	the namespace.
	  using	namespace foo;

       Corresponding cpplint.py	check name: build/namespaces.

   google-default-arguments
       Checks that default arguments are not given for virtual methods.

       See https://google.github.io/styleguide/cppguide.html#Default_Arguments

   google-explicit-constructor
       Checks that constructors	callable with a	single argument	and conversion
       operators  are  marked  explicit	to avoid the risk of unintentional im-
       plicit conversions.

       Consider	this example:

	  struct S {
	    int	x;
	    operator bool() const { return true; }
	  };

	  bool f() {
	    S a{1};
	    S b{2};
	    return a ==	b;
	  }

       The function will return	true, since the	objects	 are  implicitly  con-
       verted to bool before comparison, which is unlikely to be the intent.

       The  check  will	 suggest  inserting explicit before the	constructor or
       conversion operator declaration.	However, copy  and  move  constructors
       should  not  be	explicit, as well as constructors taking a single ini-
       tializer_list argument.

       This code:

	  struct S {
	    S(int a);
	    explicit S(const S&);
	    operator bool() const;
	    ...

       will become

	  struct S {
	    explicit S(int a);
	    S(const S&);
	    explicit operator bool() const;
	    ...

       See
       https://google.github.io/styleguide/cppguide.html#Explicit_Constructors

   google-global-names-in-headers
       Flag global namespace pollution in header  files.  Right	 now  it  only
       triggers	on using declarations and directives.

       The	   relevant	   style	guide	     section	    is
       https://google.github.io/styleguide/cppguide.html#Namespaces.

   Options
       HeaderFileExtensions
	      A	comma-separated	list of	filename extensions  of	 header	 files
	      (the filename extensions should not contain "." prefix). Default
	      is  "h".	 For  header  files without an extension, use an empty
	      string (if there are no other desired extensions)	 or  leave  an
	      empty  element  in  the  list.  e.g.,  "h,hh,hpp,hxx," (note the
	      trailing comma).

   google-objc-avoid-nsobject-new
       Finds calls to +new or overrides	of it, which  are  prohibited  by  the
       Google Objective-C style	guide.

       The  Google  Objective-C	style guide forbids calling +new or overriding
       it in class implementations, preferring +alloc and -init	methods	to in-
       stantiate objects.

       An example:

	  NSDate *now =	[NSDate	new];
	  Foo *bar = [Foo new];

       Instead,	code should use	+alloc/-init or	class factory methods.

	  NSDate *now =	[NSDate	date];
	  Foo *bar = [[Foo alloc] init];

       This check corresponds to the Google Objective-C	Style  Guide  rule  Do
       Not Use +new.

   google-objc-avoid-throwing-exception
       Finds uses of throwing exceptions usages	in Objective-C files.

       For the same reason as the Google C++ style guide, we prefer not	throw-
       ing exceptions from Objective-C code.

       The	  corresponding	       C++	 style	     guide	 rule:
       https://google.github.io/styleguide/cppguide.html#Exceptions

       Instead,	prefer passing in NSError ** and return	BOOL to	indicate  suc-
       cess or failure.

       A counterexample:

	  - (void)readFile {
	    if ([self isError])	{
	      @throw [NSException exceptionWithName:...];
	    }
	  }

       Instead,	returning an error via NSError ** is preferred:

	  - (BOOL)readFileWithError:(NSError **)error {
	    if ([self isError])	{
	      *error = [NSError	errorWithDomain:...];
	      return NO;
	    }
	    return YES;
	  }

       The	    corresponding	   style	  guide		 rule:
       https://google.github.io/styleguide/objcguide.html#avoid-throwing-exceptions

   google-objc-function-naming
       Finds function declarations in Objective-C files	that do	not follow the
       pattern described in the	Google Objective-C Style Guide.

       The   corresponding   style   guide   rule   can	  be	found	 here:
       https://google.github.io/styleguide/objcguide.html#function-names

       All  function  names  should be in Pascal case. Functions whose storage
       class is	not static should have an appropriate prefix.

       The following code sample does not follow this pattern:

	  static bool is_positive(int i) { return i > 0; }
	  bool IsNegative(int i) { return i < 0; }

       The sample above	might be corrected to the following code:

	  static bool IsPositive(int i)	{ return i > 0;	}
	  bool *ABCIsNegative(int i) { return i	< 0; }

   google-objc-global-variable-declaration
       Finds global variable declarations in Objective-C  files	 that  do  not
       follow  the  pattern  of	 variable  names in Google's Objective-C Style
       Guide.

       The	    corresponding	   style	  guide		 rule:
       https://google.github.io/styleguide/objcguide.html#variable-names

       All  the	 global	variables should follow	the pattern of g[A-Z].*	(vari-
       ables) or k[A-Z].* (constants). The check will suggest a	variable  name
       that follows the	pattern	if it can be inferred from the original	name.

       For code:

	  static NSString* myString = @"hello";

       The fix will be:

	  static NSString* gMyString = @"hello";

       Another example of constant:

	  static NSString* const myConstString = @"hello";

       The fix will be:

	  static NSString* const kMyConstString	= @"hello";

       However for code	that prefixed with non-alphabetical characters like:

	  static NSString* __anotherString = @"world";

       The check will give a warning message but will not be able to suggest a
       fix. The	user need to fix it on his own.

   google-readability-avoid-underscore-in-googletest-name
       Checks  whether	there are underscores in googletest test and test case
       names in	test macros:

        TEST

        TEST_F

        TEST_P

        TYPED_TEST

        TYPED_TEST_P

       The FRIEND_TEST macro is	not included.

       For example:

	  TEST(TestCaseName, Illegal_TestName) {}
	  TEST(Illegal_TestCaseName, TestName) {}

       would trigger the check.	Underscores are	not allowed in test names  nor
       test case names.

       The DISABLED_ prefix, which may be used to disable individual tests, is
       ignored	when checking test names, but the rest of the rest of the test
       name is still checked.

       This check does not propose any fixes.

   google-readability-braces-around-statements
       The  google-readability-braces-around-statements	 check	is  an	alias,
       please see readability-braces-around-statements for more	information.

   google-readability-casting
       Finds usages of C-style casts.

       https://google.github.io/styleguide/cppguide.html#Casting

       Corresponding cpplint.py	check name: readability/casting.

       This  check  is	similar	to -Wold-style-cast, but it suggests automated
       fixes in	some cases. The	reported locations  should  not	 be  different
       from the	ones generated by -Wold-style-cast.

   google-readability-function-size
       The  google-readability-function-size  check  is	 an  alias, please see
       readability-function-size for more information.

   google-readability-namespace-comments
       The google-readability-namespace-comments check is an alias, please see
       llvm-namespace-comment for more information.

   google-readability-todo
       Finds TODO comments without a username or bug number.

       The	  relevant	  style	       guide	    section	    is
       https://google.github.io/styleguide/cppguide.html#TODO_Comments.

       Corresponding cpplint.py	check: readability/todo

   google-runtime-int
       Finds uses of short, long and long long and suggest replacing them with
       u?intXX(_t)?.

       The	    corresponding	   style	  guide		 rule:
       https://google.github.io/styleguide/cppguide.html#Integer_Types.

       Corresponding cpplint.py	check: runtime/int.

   Options
       UnsignedTypePrefix
	      A	string specifying the unsigned type prefix. Default is uint.

       SignedTypePrefix
	      A	string specifying the signed type prefix. Default is int.

       TypeSuffix
	      A	string specifying the type suffix. Default is an empty string.

   google-runtime-operator
       Finds overloads of unary	operator &.

       https://google.github.io/styleguide/cppguide.html#Operator_Overloading

       Corresponding cpplint.py	check name: runtime/operator.

   google-runtime-references
       Checks the usage	of non-constant	references in function parameters.

       The	    corresponding	   style	  guide		 rule:
       https://google.github.io/styleguide/cppguide.html#Reference_Arguments

   Options
       IncludedTypes
	      A	 semicolon-separated  list of names of types to	explicitly in-
	      clude. Default is	empty.

   google-upgrade-googletest-case
       Finds uses of deprecated	Google Test version 1.9	APIs with  names  con-
       taining case and	replaces them with equivalent APIs with	suite.

       All  names containing case are being replaced to	be consistent with the
       meanings	of "test case" and "test suite"	as used	by  the	 International
       Software	Testing	Qualifications Board and ISO 29119.

       The  new	names are a part of Google Test	version	1.9 (release pending).
       It is recommended that users update their dependency to version 1.9 and
       then use	this check to remove deprecated	names.

       The affected APIs are:

        Member	  functions   of   testing::Test,   testing::TestInfo,	 test-
	 ing::TestEventListener,  testing::UnitTest,  and  any type inheriting
	 from these types

        The	 macros	    TYPED_TEST_CASE,	 TYPED_TEST_CASE_P,	REGIS-
	 TER_TYPED_TEST_CASE_P,	and INSTANTIATE_TYPED_TEST_CASE_P

        The type alias	testing::TestCase

       Examples	of fixes created by this check:

	  class	FooTest	: public testing::Test {
	  public:
	    static void	SetUpTestCase();
	    static void	TearDownTestCase();
	  };

	  TYPED_TEST_CASE(BarTest, BarTypes);

       becomes

	  class	FooTest	: public testing::Test {
	  public:
	    static void	SetUpTestSuite();
	    static void	TearDownTestSuite();
	  };

	  TYPED_TEST_SUITE(BarTest, BarTypes);

       For better consistency of user code, the	check renames both virtual and
       non-virtual  member functions with matching names in derived types. The
       check tries to provide a	only warning when a fix	cannot be made safely,
       as is the case with some	template and macro uses.

   hicpp-avoid-c-arrays
       The   hicpp-avoid-c-arrays   check   is	 an    alias,	 please	   see
       modernize-avoid-c-arrays	for more information.

   hicpp-avoid-goto
       The hicpp-avoid-goto check is an	alias to cppcoreguidelines-avoid-goto.
       Rule  6.3.1 High	Integrity C++ requires that goto only skips parts of a
       block and is not	used for other reasons.

       Both coding guidelines implement	the same exception  to	the  usage  of
       goto.

   hicpp-braces-around-statements
       The  hicpp-braces-around-statements  check  is  an  alias,  please  see
       readability-braces-around-statements for	more information.  It enforces
       the rule	6.1.1.

   hicpp-deprecated-headers
       The  hicpp-deprecated-headers   check   is   an	 alias,	  please   see
       modernize-deprecated-headers  for  more	information.   It enforces the
       rule 1.3.3.

   hicpp-exception-baseclass
       Ensure that every value that in a throw expression is  an  instance  of
       std::exception.

       This enforces rule 15.1 of the High Integrity C++ Coding	Standard.

	  class	custom_exception {};

	  void throwing() noexcept(false) {
	    // Problematic throw expressions.
	    throw int(42);
	    throw custom_exception();
	  }

	  class	mathematical_error : public std::exception {};

	  void throwing2() noexcept(false) {
	    // These kind of throws are	ok.
	    throw mathematical_error();
	    throw std::runtime_error();
	    throw std::exception();
	  }

   hicpp-explicit-conversions
       This  check  is	an alias for google-explicit-constructor.  Used	to en-
       force parts of rule 5.4.1.  This	check will enforce  that  constructors
       and  conversion	operators are marked explicit.	Other forms of casting
       checks are implemented in other places.	The following  checks  can  be
       used to check for more forms of casting:

        cppcoreguidelines-pro-type-static-cast-downcast

        cppcoreguidelines-pro-type-reinterpret-cast

        cppcoreguidelines-pro-type-const-cast

        cppcoreguidelines-pro-type-cstyle-cast

   hicpp-function-size
       This  check  is	an alias for readability-function-size.	 Useful	to en-
       force multiple sections on function complexity.

        rule 8.2.2

        rule 8.3.1

        rule 8.3.2

   hicpp-invalid-access-moved
       This check is an	alias for bugprone-use-after-move.

       Implements parts	of the rule 8.4.1 to check if moved-from  objects  are
       accessed.

   hicpp-member-init
       This check is an	alias for cppcoreguidelines-pro-type-member-init.  Im-
       plements	 the  check for	rule 12.4.2 to initialize class	members	in the
       right order.

   hicpp-move-const-arg
       The   hicpp-move-const-arg   check   is	 an    alias,	 please	   see
       performance-move-const-arg  for more information.  It enforces the rule
       17.3.1.

   hicpp-multiway-paths-covered
       This check discovers situations where code paths	are not	fully-covered.
       It furthermore suggests using if	instead	of switch if the code will  be
       more  clear.   The  rule	6.1.2 and rule 6.1.4 of	the High Integrity C++
       Coding Standard are enforced.

       if-else if chains that miss a final else	branch	might  lead  to	 unex-
       pected  program execution and be	the result of a	logical	error.	If the
       missing else branch is intended you can leave it	empty with a  clarify-
       ing  comment.   This  warning can be noisy on some code bases, so it is
       disabled	by default.

	  void f1() {
	    int	i = determineTheNumber();

	     if(i > 0) {
	       // Some Calculation
	     } else if (i < 0) {
	       // Precondition violated	or something else.
	     }
	     //	...
	  }

       Similar arguments hold for switch statements which  do  not  cover  all
       possible	code paths.

	  // The missing default branch	might be a logical error. It can be kept empty
	  // if	there is nothing to do,	making it explicit.
	  void f2(int i) {
	    switch (i) {
	    case 0: // something
	      break;
	    case 1: // something else
	      break;
	    }
	    // All other numbers?
	  }

	  // Violates this rule	as well, but already emits a compiler warning (-Wswitch).
	  enum Color { Red, Green, Blue, Yellow	};
	  void f3(enum Color c)	{
	    switch (c) {
	    case Red: // We can't drive	for now.
	      break;
	    case Green:	 // We are allowed to drive.
	      break;
	    }
	    // Other cases missing
	  }

       The  rule  6.1.4	 requires  every switch	statement to have at least two
       case labels other than a	default	label.	Otherwise, the switch could be
       better expressed	with an	if statement.  Degenerated  switch  statements
       without any labels are caught as	well.

	  // Degenerated switch	that could be better written as	`if`
	  int i	= 42;
	  switch(i) {
	    case 1: // do something here
	    default: //	do somethe else	here
	  }

	  // Should rather be the following:
	  if (i	== 1) {
	    // do something here
	  }
	  else {
	    // do something here
	  }

	  // A completely degenerated switch will be diagnosed.
	  int i	= 42;
	  switch(i) {}

   Options
       WarnOnMissingElse
	      Boolean flag that	activates a warning for	missing	else branches.
	      Default is 0.

   hicpp-named-parameter
       This check is an	alias for readability-named-parameter.

       Implements rule 8.2.1.

   hicpp-new-delete-operators
       This  check is an alias for misc-new-delete-overloads.  Implements rule
       12.3.1 to ensure	the new	and delete operators have the  correct	signa-
       ture.

   hicpp-no-array-decay
       The    hicpp-no-array-decay    check    is   an	 alias,	  please   see
       cppcoreguidelines-pro-bounds-array-to-pointer-decay for	more  informa-
       tion.  It enforces the rule 4.1.1.

   hicpp-no-assembler
       Check for assembler statements. No fix is offered.

       Inline  assembler  is forbidden by the High Intergrity C++ Coding Stan-
       dard as it restricts the	portability of code.

   hicpp-no-malloc
       The    hicpp-no-malloc	 check	  is	an    alias,	please	   see
       cppcoreguidelines-no-malloc for more information.  It enforces the rule
       5.3.2.

   hicpp-noexcept-move
       This  check  is	an  alias  for	performance-noexcept-move-constructor.
       Checks rule 12.5.4 to mark move assignment and move construction	 noex-
       cept.

   hicpp-signed-bitwise
       Finds  uses  of	bitwise	 operations on signed integer types, which may
       lead to undefined or implementation defined behaviour.

       The according rule is defined in	the High Integrity C++ Standard,  Sec-
       tion 5.6.1.

   Options
       IgnorePositiveIntegerLiterals
	      If  this	option is set to true, the check will not warn on bit-
	      wise operations with positive integer literals, e.g. ~0, 2 << 1,
	      etc.  Default value is false.

   hicpp-special-member-functions
       This check is an	alias for  cppcoreguidelines-special-member-functions.
       Checks  that  special  member functions have the	correct	signature, ac-
       cording to rule 12.5.7.

   hicpp-static-assert
       The   hicpp-static-assert   check   is	 an    alias,	 please	   see
       misc-static-assert for more information.	 It enforces the rule 7.1.10.

   hicpp-undelegated-constructor
       This check is an	alias for bugprone-undelegated-constructor.  Partially
       implements  rule	 12.4.5	 to  find misplaced constructor	calls inside a
       constructor.

	  struct Ctor {
	    Ctor();
	    Ctor(int);
	    Ctor(int, int);
	    Ctor(Ctor *i) {
	      // All Ctor() calls result in a temporary	object
	      Ctor(); // did you intend	to call	a delegated constructor?
	      Ctor(0); // did you intend to call a delegated constructor?
	      Ctor(1, 2); // did you intend to call a delegated	constructor?
	      foo();
	    }
	  };

   hicpp-uppercase-literal-suffix
       The  hicpp-uppercase-literal-suffix  check  is  an  alias,  please  see
       readability-uppercase-literal-suffix for	more information.

   hicpp-use-auto
       The hicpp-use-auto check	is an alias, please see	modernize-use-auto for
       more information.  It enforces the rule 7.1.8.

   hicpp-use-emplace
       The    hicpp-use-emplace	   check    is	  an	alias,	  please   see
       modernize-use-emplace for  more	information.   It  enforces  the  rule
       17.4.2.

   hicpp-use-equals-default
       This  check  is	an alias for modernize-use-equals-default.  Implements
       rule 12.5.1 to explicitly default special member	functions.

   hicpp-use-equals-delete
       This check is an	 alias	for  modernize-use-equals-delete.   Implements
       rule 12.5.1 to explicitly default or delete special member functions.

   hicpp-use-noexcept
       The    hicpp-use-noexcept    check    is	   an	 alias,	  please   see
       modernize-use-noexcept for more	information.   It  enforces  the  rule
       1.3.5.

   hicpp-use-nullptr
       The    hicpp-use-nullptr	   check    is	  an	alias,	  please   see
       modernize-use-nullptr for  more	information.   It  enforces  the  rule
       2.5.3.

   hicpp-use-override
       This  check  is	an  alias for modernize-use-override.  Implements rule
       10.2.1 to declare a virtual function override when overriding.

   hicpp-vararg
       The    hicpp-vararg    check    is     an     alias,	please	   see
       cppcoreguidelines-pro-type-vararg  for  more  information.  It enforces
       the rule	14.1.1.

   linuxkernel-must-use-errs
       Checks Linux kernel code	to see if it uses the results from  the	 func-
       tions  in linux/err.h. Also checks to see if code uses the results from
       functions that directly return a	value from one of  these  error	 func-
       tions.

       This is important in the	Linux kernel because ERR_PTR, PTR_ERR, IS_ERR,
       IS_ERR_OR_NULL,	ERR_CAST,  and	PTR_ERR_OR_ZERO	 return	values must be
       checked,	since positive pointers	and negative  error  codes  are	 being
       used  in	 the  same  context.  These  functions	are  marked with __at-
       tribute__((warn_unused_result)),	but some kernel	versions do  not  have
       this warning enabled for	clang.

       Examples:

	  /* Trivial unused call to an ERR function */
	  PTR_ERR_OR_ZERO(some_function_call());

	  /* A function	that returns ERR_PTR. */
	  void *fn() { ERR_PTR(-EINVAL); }

	  /* An	invalid	use of fn. */
	  fn();

   llvm-else-after-return
       The    llvm-else-after-return   check   is   an	 alias,	  please   see
       readability-else-after-return for more information.

   llvm-header-guard
       Finds and fixes header guards that do not adhere	to LLVM	style.

   Options
       HeaderFileExtensions
	      A	comma-separated	list of	filename extensions  of	 header	 files
	      (the filename extensions should not include "." prefix). Default
	      is  "h,hh,hpp,hxx".   For	header files without an	extension, use
	      an empty string (if there	are no other  desired  extensions)  or
	      leave  an	empty element in the list. e.g., "h,hh,hpp,hxx," (note
	      the trailing comma).

   llvm-include-order
       Checks the correct order	of #includes.

       See https://llvm.org/docs/CodingStandards.html#include-style

   llvm-namespace-comment
       google-readability-namespace-comments redirects here as	an  alias  for
       this check.

       Checks that long	namespaces have	a closing comment.

       https://llvm.org/docs/CodingStandards.html#namespace-indentation

       https://google.github.io/styleguide/cppguide.html#Namespaces

	  namespace n1 {
	  void f();
	  }

	  // becomes

	  namespace n1 {
	  void f();
	  }  //	namespace n1

   Options
       ShortNamespaceLines
	      Requires	the  closing  brace  of	the namespace definition to be
	      followed by a closing comment if the body	of the	namespace  has
	      more than	ShortNamespaceLines lines of code. The value is	an un-
	      signed integer that defaults to 1U.

       SpacesBeforeComments
	      An  unsigned  integer specifying the number of spaces before the
	      comment closing a	namespace definition. Default is 1U.

   llvm-prefer-isa-or-dyn-cast-in-conditionals
       Looks at	conditionals and finds and replaces  cases  of	cast<>,	 which
       will assert rather than return a	null pointer, and dyn_cast<> where the
       return  value  is  not captured.	Additionally, finds and	replaces cases
       that match the pattern var  &&  isa<X>(var),  where  var	 is  evaluated
       twice.

	  // Finds these:
	  if (auto x = cast<X>(y)) {}
	  // is	replaced by:
	  if (auto x = dyn_cast<X>(y)) {}

	  if (cast<X>(y)) {}
	  // is	replaced by:
	  if (isa<X>(y)) {}

	  if (dyn_cast<X>(y)) {}
	  // is	replaced by:
	  if (isa<X>(y)) {}

	  if (var && isa<T>(var)) {}
	  // is	replaced by:
	  if (isa_and_nonnull<T>(var.foo())) {}

	  // Other cases are ignored, e.g.:
	  if (auto f = cast<Z>(y)->foo()) {}
	  if (cast<Z>(y)->foo()) {}
	  if (X.cast(y)) {}

   llvm-prefer-register-over-unsigned
       Finds  historical  use  of  unsigned  to	 hold  vregs  and physregs and
       rewrites	them to	use Register.

       Currently this works by finding all variables of	unsigned integer  type
       whose  initializer  begins  with	 an implicit cast from Register	to un-
       signed.

	  void example(MachineOperand &MO) {
	    unsigned Reg = MO.getReg();
	    ...
	  }

       becomes:

	  void example(MachineOperand &MO) {
	    Register Reg = MO.getReg();
	    ...
	  }

   llvm-qualified-auto
       The   llvm-qualified-auto   check   is	 an    alias,	 please	   see
       readability-qualified-auto for more information.

   llvm-twine-local
       Looks  for local	Twine variables	which are prone	to use after frees and
       should be generally avoided.

	  static Twine Moo = Twine("bark") + "bah";

	  // becomes

	  static std::string Moo = (Twine("bark") + "bah").str();

   llvmlibc-callee-namespace
       Checks all calls	resolve	to functions within __llvm_libc	namespace.

	  namespace __llvm_libc	{

	  // Allow calls with the fully	qualified name.
	  __llvm_libc::strlen("hello");

	  // Allow calls to compiler provided functions.
	  (void)__builtin_abs(-1);

	  // Bare calls	are allowed as long as they resolve to the correct namespace.
	  strlen("world");

	  // Disallow calling into functions in	the global namespace.
	  ::strlen("!");

	  } // namespace __llvm_libc

   llvmlibc-implementation-in-namespace
       Checks that all declarations in the llvm-libc implementation are	within
       the correct namespace.

	  // Correct: implementation inside the	correct	namespace.
	  namespace __llvm_libc	{
	      void LLVM_LIBC_ENTRYPOINT(strcpy)(char *dest, const char *src) {}
	      // Namespaces within __llvm_libc namespace are allowed.
	      namespace	inner{
		  int localVar = 0;
	      }
	      // Functions with	C linkage are allowed.
	      extern "C" void str_fuzz(){}
	  }

	  // Incorrect:	implementation not in a	namespace.
	  void LLVM_LIBC_ENTRYPOINT(strcpy)(char *dest,	const char *src) {}

	  // Incorrect:	outer most namespace is	not correct.
	  namespace something_else {
	      void LLVM_LIBC_ENTRYPOINT(strcpy)(char *dest, const char *src) {}
	  }

   llvmlibc-restrict-system-libc-headers
       Finds includes of system	libc headers  not  provided  by	 the  compiler
       within llvm-libc	implementations.

	  #include <stdio.h>		// Not allowed because it is part of system libc.
	  #include <stddef.h>		// Allowed because it is provided by the compiler.
	  #include "internal/stdio.h"	// Allowed because it is NOT part of system libc.

       This  check  is	necessary  because  accidentally including system libc
       headers can lead	to subtle and hard to detect bugs.  For	 example  con-
       sider  a	 system	 libc whose dirent struct has slightly different field
       ordering	than llvm-libc.	 While this will  compile  successfully,  this
       can cause issues	during runtime because they are	ABI incompatible.

   Options
       Includes
	      A	 string	 containing a comma separated glob list	of allowed in-
	      clude filenames. Similar to the -checks glob  list  for  running
	      clang-tidy  itself,  the two wildcard characters are * and -, to
	      include and exclude globs,  respectively.	 The  default  is  -*,
	      which disallows all includes.

	      This  can	be used	to allow known safe includes such as Linux de-
	      velopment	headers. See portability-restrict-system-includes  for
	      more details.

   misc-definitions-in-headers
       Finds non-extern	non-inline function and	variable definitions in	header
       files, which can	lead to	potential ODR violations in case these headers
       are included from multiple translation units.

	  // Foo.h
	  int a	= 1; //	Warning: variable definition.
	  extern int d;	// OK: extern variable.

	  namespace N {
	    int	e = 2; // Warning: variable definition.
	  }

	  // Warning: variable definition.
	  const	char* str = "foo";

	  // OK: internal linkage variable definitions are ignored for now.
	  // Although these might also cause ODR violations, we	can be less certain and
	  // should try	to keep	the false-positive rate	down.
	  static int b = 1;
	  const	int c =	1;
	  const	char* const str2 = "foo";
	  constexpr int	k = 1;

	  // Warning: function definition.
	  int g() {
	    return 1;
	  }

	  // OK: inline	function definition is allowed to be defined multiple times.
	  inline int e() {
	    return 1;
	  }

	  class	A {
	  public:
	    int	f1() { return 1; } // OK: implicitly inline member function definition is allowed.
	    int	f2();

	    static int d;
	  };

	  // Warning: not an inline member function definition.
	  int A::f2() {	return 1; }

	  // OK: class static data member declaration is allowed.
	  int A::d = 1;

	  // OK: function template is allowed.
	  template<typename T>
	  T f3() {
	    T a	= 1;
	    return a;
	  }

	  // Warning: full specialization of a function	template is not	allowed.
	  template <>
	  int f3() {
	    int	a = 1;
	    return a;
	  }

	  template <typename T>
	  struct B {
	    void f1();
	  };

	  // OK: member	function definition of a class template	is allowed.
	  template <typename T>
	  void B<T>::f1() {}

	  class	CE {
	    constexpr static int i = 5;	// OK: inline variable definition.
	  };

	  inline int i = 5; // OK: inline variable definition.

	  constexpr int	f10() {	return 0; } // OK: constexpr function implies inline.

	  // OK: C++14 variable	templates are inline.
	  template <class T>
	  constexpr T pi = T(3.1415926L);

   Options
       HeaderFileExtensions
	      A	 comma-separated  list	of filename extensions of header files
	      (the filename extensions should not include "." prefix). Default
	      is "h,hh,hpp,hxx".  For header files without an  extension,  use
	      an  empty	 string	 (if there are no other	desired	extensions) or
	      leave an empty element in	the list. e.g.,	"h,hh,hpp,hxx,"	 (note
	      the trailing comma).

       UseHeaderFileExtension
	      When  non-zero, the check	will use the file extension to distin-
	      guish header files. Default is 1.

   misc-misplaced-const
       This check diagnoses when a const qualifier is applied  to  a  typedef/
       using  to  a pointer type rather	than to	the pointee, because such con-
       structs are often misleading to developers because the const applies to
       the pointer rather than the pointee.

       For instance, in	the following code, the	resulting type is int *	 const
       rather than const int *:

	  typedef int *int_ptr;
	  void f(const int_ptr ptr) {
	    *ptr = 0; // potentially quite unexpectedly	the int	can be modified	here
	    ptr	= 0; //	does not compile
	  }

       The check does not diagnose when	the underlying typedef/using type is a
       pointer to a const type or a function pointer type. This	is because the
       const  qualifier	 is less likely	to be mistaken because it would	be re-
       dundant (or disallowed) on the underlying pointee type.

   misc-new-delete-overloads
       cert-dcl54-cpp redirects	here as	an alias for this check.

       The check flags overloaded operator new() and operator  delete()	 func-
       tions  that  do	not  have  a corresponding free	store function defined
       within the same scope.  For instance, the check will flag a  class  im-
       plementation  of	a non-placement	operator new() when the	class does not
       also define a non-placement operator delete() function as well.

       The check does not flag implicitly-defined operators, deleted  or  pri-
       vate operators, or placement operators.

       This  check  corresponds	 to  CERT  C++ Coding Standard rule DCL54-CPP.
       Overload	allocation and deallocation functions as a pair	 in  the  same
       scope.

   misc-no-recursion
       Finds  strongly	connected  functions  (by analyzing the	call graph for
       SCC's (Strongly Connected Components) that are loops),  diagnoses  each
       function	 in  the  cycle,  and  displays	one example of a possible call
       graph loop (recursion).

       References: * CERT C++ Coding Standard  rule  DCL56-CPP.	 Avoid	cycles
       during  initialization  of  static objects.  * JPL Institutional	Coding
       Standard	for the	C Programming Language (JPL DOCID D-60411) rule	2.4 Do
       not use direct or indirect recursion.  *	OpenCL Specification,  Version
       1.2 rule	6.9 Restrictions: i. Recursion is not supported..

       Limitations:  *	The  check does	not handle calls done through function
       pointers	* The check does not handle C++	destructors

   misc-non-copyable-objects
       cert-fio38-c redirects here as an alias for this	check.

       The check flags dereferences and	non-pointer  declarations  of  objects
       that  are  not  meant  to be passed by value, such as C FILE objects or
       POSIX pthread_mutex_t objects.

       This check corresponds to CERT C++ Coding Standard rule FIO38-C.	Do not
       copy a FILE object.

   misc-non-private-member-variables-in-classes
       cppcoreguidelines-non-private-member-variables-in-classes     redirects
       here as an alias	for this check.

       Finds  classes  that  contain  non-static  data	members	in addition to
       user-declared non-static	member functions and diagnose all data members
       declared	with a non-public access specifier. The	data members should be
       declared	as private and accessed	through	member	functions  instead  of
       exposed to derived classes or class consumers.

   Options
       IgnoreClassesWithAllMemberVariablesBeingPublic
	      Allows  to completely ignore classes if all the member variables
	      in that class a declared with a public access specifier.

       IgnorePublicMemberVariables
	      Allows to	ignore (not diagnose) all  the	member	variables  de-
	      clared with a public access specifier.

   misc-redundant-expression
       Detect	redundant  expressions	which  are  typically  errors  due  to
       copy-paste.

       Depending on the	operator expressions may be

        redundant,

        always	true,

        always	false,

        always	a constant (zero or one).

       Examples:

	  ((x+1) | (x+1))	      // (x+1) is redundant
	  (p->x	== p->x)	      // always	true
	  (p->x	< p->x)		      // always	false
	  (speed - speed + 1 ==	12)   // speed - speed is always zero

   misc-static-assert
       cert-dcl03-c redirects here as an alias for this	check.

       Replaces	assert() with static_assert() if the condition is  evaluatable
       at compile time.

       The  condition of static_assert() is evaluated at compile time which is
       safer and more efficient.

   misc-throw-by-value-catch-by-reference
       cert-err09-cpp  redirects  here	 as   an   alias   for	 this	check.
       cert-err61-cpp redirects	here as	an alias for this check.

       Finds  violations of the	rule "Throw by value, catch by reference" pre-
       sented for example in "C++  Coding  Standards"  by  H.  Sutter  and  A.
       Alexandrescu,  as  well as the CERT C++ Coding Standard rule ERR61-CPP.
       Catch exceptions	by lvalue reference.

       Exceptions:

	      	Throwing string	literals will not be flagged despite  being  a
		pointer.  They are not susceptible to slicing and the usage of
		string literals	is idomatic.

	      	Catching character pointers (char, wchar_t, unicode  character
		types) will not	be flagged to allow catching sting literals.

	      	Moved  named  values  will  not	 be flagged as not throwing an
		anonymous temporary. In	this case we can be sure that the user
		knows that the object can't be accessed	outside	 catch	blocks
		handling the error.

	      	Throwing function parameters will not be flagged as not	throw-
		ing  an	 anonymous temporary. This allows helper functions for
		throwing.

	      	Re-throwing caught exception variables will not	be flragged as
		not throwing an	anonymous temporary. Although this can usually
		be done	by just	writing	throw; it happens often	enough in real
		code.

   Options
       CheckThrowTemporaries
	      Triggers detection of  violations	 of  the  CERT	recommendation
	      ERR09-CPP. Throw anonymous temporaries.  Default is 1.

       WarnOnLargeObject
	      Also warns for any large,	trivial	object caught by value.	Catch-
	      ing  a  large  object  by	value is not dangerous but affects the
	      performance negatively. The maximum size of an object allowed to
	      be caught	without	warning	can be set using the  MaxSize  option.
	      Default is 0.

       MaxSize
	      Determines  the  maximum	size of	an object allowed to be	caught
	      without warning. Only applicable if WarnOnLargeObject is set  to
	      1.   If	option	 is  set  by  the  user	 to  std::numeric_lim-
	      its<uint64_t>::max() then	it reverts to the default value.   De-
	      fault is the size	of size_t.

   misc-unconventional-assign-operator
       Finds declarations of assign operators with the wrong return and/or ar-
       gument  types  and  definitions	with good return type but wrong	return
       statements.

	   The	return type must be Class&.

	   Works with move-assign and assign by value.

	   Private and	deleted	operators are ignored.

	   The	operator must always return *this.

   misc-uniqueptr-reset-release
       Find and	replace	unique_ptr::reset(release()) with std::move().

       Example:

	  std::unique_ptr<Foo> x, y;
	  x.reset(y.release());	-> x = std::move(y);

       If y is already rvalue, std::move() is not added. x and y can  also  be
       std::unique_ptr<Foo>*.

   misc-unused-alias-decls
       Finds unused namespace alias declarations.

   misc-unused-parameters
       Finds  unused  function parameters. Unused parameters may signify a bug
       in the code (e.g. when a	different parameter is used instead). The sug-
       gested fixes either comment parameter name out or remove	the  parameter
       completely,  if all callers of the function are in the same translation
       unit and	can be updated.

       The check is similar to the -Wunused-parameter compiler diagnostic  and
       can  be	used  to prepare a codebase to enabling	of that	diagnostic. By
       default the check is more permissive (see StrictMode).

	  void a(int i)	{ /*some code that doesn't use `i`*/ }

	  // becomes

	  void a(int  /*i*/) { /*some code that	doesn't	use `i`*/ }

	  static void staticFunctionA(int i);
	  static void staticFunctionA(int i) { /*some code that	doesn't	use `i`*/ }

	  // becomes

	  static void staticFunctionA()
	  static void staticFunctionA()	{ /*some code that doesn't use `i`*/ }

   Options
       StrictMode
	      When zero	(default value), the check will	ignore	trivially  un-
	      used  parameters,	 i.e.  when  the corresponding function	has an
	      empty body (and in case of constructors -	 no  constructor  ini-
	      tializers). When the function body is empty, an unused parameter
	      is unlikely to be	unnoticed by a human reader, and there's basi-
	      cally no place for a bug to hide.

   misc-unused-using-decls
       Finds unused using declarations.

       Example:

	  namespace n {	class C; }
	  using	n::C;  // Never	actually used.

   modernize-avoid-bind
       The  check  finds  uses	of std::bind and boost::bind and replaces them
       with lambdas. Lambdas will use value-capture unless  reference  capture
       is explicitly requested with std::ref or	boost::ref.

       It  supports  arbitrary	callables including member functions, function
       objects,	and free functions, and	all variations thereof.	Anything  that
       you  can	pass to	the first argument of bind should be diagnosable. Cur-
       rently, the only	known case where a fix-it is unsupported is  when  the
       same placeholder	is specified multiple times in the parameter list.

       Given:

	  int add(int x, int y)	{ return x + y;	}

       Then:

	  void f() {
	    int	x = 2;
	    auto clj = std::bind(add, x, _1);
	  }

       is replaced by:

	  void f() {
	    int	x = 2;
	    auto clj = [=](auto	&& arg1) { return add(x, arg1);	};
	  }

       std::bind can be	hard to	read and can result in larger object files and
       binaries	 due  to type information that will not	be produced by equiva-
       lent lambdas.

   Options
       PermissiveParameterList
	      If the  option  is  set  to  non-zero,  the  check  will	append
	      auto&&...	 to the	end of every placeholder parameter list. With-
	      out this,	it is possible for a fix-it to	perform	 an  incorrect
	      transformation  in the case where	the result of the bind is used
	      in the context of	a type erased functor  such  as	 std::function
	      which allows mismatched arguments. For example:

	  int add(int x, int y)	{ return x + y;	}
	  int foo() {
	    std::function<int(int,int)>	ignore_args = std::bind(add, 2,	2);
	    return ignore_args(3, 3);
	  }

       is  valid  code,	and returns 4. The actual values passed	to ignore_args
       are simply ignored.  Without  PermissiveParameterList,  this  would  be
       transformed into

	  int add(int x, int y)	{ return x + y;	}
	  int foo() {
	    std::function<int(int,int)>	ignore_args = [] { return add(2, 2); }
	    return ignore_args(3, 3);
	  }

       which will not compile, since the lambda	does not contain an operator()
       that  that  accepts 2 arguments.	With permissive	parameter list,	it in-
       stead generates

	  int add(int x, int y)	{ return x + y;	}
	  int foo() {
	    std::function<int(int,int)>	ignore_args = [](auto&&...) { return add(2, 2);	}
	    return ignore_args(3, 3);
	  }

       which is	correct.

       This check requires using C++14 or higher to run.

   modernize-avoid-c-arrays
       cppcoreguidelines-avoid-c-arrays	redirects here as an  alias  for  this
       check.

       hicpp-avoid-c-arrays redirects here as an alias for this	check.

       Finds C-style array types and recommend to use std::array<> / std::vec-
       tor<>. All types	of C arrays are	diagnosed.

       However,	 fix-it	 are  potentially  dangerous  in  header files and are
       therefore not emitted right now.

	  int a[] = {1,	2}; // warning:	do not declare C-style arrays, use std::array<>	instead

	  int b[1]; // warning:	do not declare C-style arrays, use std::array<>	instead

	  void foo() {
	    int	c[b[0]]; // warning: do	not declare C VLA arrays, use std::vector<> instead
	  }

	  template <typename T,	int Size>
	  class	array {
	    T d[Size]; // warning: do not declare C-style arrays, use std::array<> instead

	    int	e[1]; // warning: do not declare C-style arrays, use std::array<> instead
	  };

	  array<int[4],	2> d; // warning: do not declare C-style arrays, use std::array<> instead

	  using	k = int[4]; // warning:	do not declare C-style arrays, use std::array<>	instead

       However,	the extern "C" code is ignored,	since it is  common  to	 share
       such headers between C code, and	C++ code.

	  // Some header
	  extern "C" {

	  int f[] = {1,	2}; // not diagnosed

	  int j[1]; // not diagnosed

	  inline void bar() {
	    {
	      int j[j[0]]; // not diagnosed
	    }
	  }

	  }

       Similarly, the main() function is ignored. Its second and third parame-
       ters can	be either char*	argv[] or char** argv, but can not be std::ar-
       ray<>.

   modernize-concat-nested-namespaces
       Checks for use of nested	namespaces such	as namespace a { namespace b {
       ...  } }	and suggests changing to the more concise syntax introduced in
       C++17: namespace	a::b { ... }.  Inline namespaces are not modified.

       For example:

	  namespace n1 {
	  namespace n2 {
	  void t();
	  }
	  }

	  namespace n3 {
	  namespace n4 {
	  namespace n5 {
	  void t();
	  }
	  }
	  namespace n6 {
	  namespace n7 {
	  void t();
	  }
	  }
	  }

       Will be modified	to:

	  namespace n1::n2 {
	  void t();
	  }

	  namespace n3 {
	  namespace n4::n5 {
	  void t();
	  }
	  namespace n6::n7 {
	  void t();
	  }
	  }

   modernize-deprecated-headers
       Some headers from C library were	deprecated in C++ and  are  no	longer
       welcome	in C++ codebases. Some have no effect in C++. For more details
       refer to	the C++	14 Standard [depr.c.headers] section.

       This check replaces C standard library headers with their C++  alterna-
       tives and removes redundant ones.

       Important note: the Standard doesn't guarantee that the C++ headers de-
       clare  all the same functions in	the global namespace. The check	in its
       current form can	break the code that  uses  library  symbols  from  the
       global namespace.

        <assert.h>

        <complex.h>

        <ctype.h>

        <errno.h>

        <fenv.h>     // deprecated since C++11

        <float.h>

        <inttypes.h>

        <limits.h>

        <locale.h>

        <math.h>

        <setjmp.h>

        <signal.h>

        <stdarg.h>

        <stddef.h>

        <stdint.h>

        <stdio.h>

        <stdlib.h>

        <string.h>

        <tgmath.h>   // deprecated since C++11

        <time.h>

        <uchar.h>    // deprecated since C++11

        <wchar.h>

        <wctype.h>

       If  the	specified standard is older than C++11 the check will only re-
       place headers deprecated	before C++11, otherwise	-- every  header  that
       appeared	in the previous	list.

       These headers don't have	effect in C++:

        <iso646.h>

        <stdalign.h>

        <stdbool.h>

   modernize-deprecated-ios-base-aliases
       Detects	usage  of the deprecated member	types of std::ios_base and re-
       places those that have a	non-deprecated equivalent.
	       +--------------------------+-------------------------+
	       | Deprecated member type	  | Replacement		    |
	       +--------------------------+-------------------------+
	       | std::ios_base::io_state  | std::ios_base::iostate  |
	       +--------------------------+-------------------------+
	       | std::ios_base::open_mode | std::ios_base::openmode |
	       +--------------------------+-------------------------+
	       | std::ios_base::seek_dir  | std::ios_base::seekdir  |
	       +--------------------------+-------------------------+
	       | std::ios_base::streamoff |			    |
	       +--------------------------+-------------------------+
	       | std::ios_base::streampos |			    |
	       +--------------------------+-------------------------+

   modernize-loop-convert
       This check converts for(...; ...; ...) loops to use the new range-based
       loops in	C++11.

       Three kinds of loops can	be converted:

        Loops over statically allocated arrays.

        Loops over containers,	using iterators.

        Loops over array-like containers, using operator[] and	at().

   MinConfidence option
   risky
       In loops	where the container expression is more	complex	 than  just  a
       reference  to a declared	expression (a variable,	function, enum,	etc.),
       and some	part of	it appears elsewhere in	the loop, we lower our	confi-
       dence  in  the transformation due to the	increased risk of changing se-
       mantics.	 Transformations for these loops are marked as risky, and thus
       will only be converted if the minimum required confidence level is  set
       to risky.

	  int arr[10][20];
	  int l	= 5;

	  for (int j = 0; j < 20; ++j)
	    int	k = arr[l][j] +	l; // using l outside arr[l] is	considered risky

	  for (int i = 0; i < obj.getVector().size(); ++i)
	    obj.foo(10); // using 'obj'	is considered risky

       See Range-based loops evaluate end() only once for an example of	an in-
       correct	transformation	when  the minimum required confidence level is
       set to risky.

   reasonable (Default)
       If a loop calls .end() or .size() after each iteration, the transforma-
       tion for	that loop is marked as reasonable, and thus will be  converted
       if  the	required  confidence  level  is	set to reasonable (default) or
       lower.

	  // using size() is considered	reasonable
	  for (int i = 0; i < container.size();	++i)
	    cout << container[i];

   safe
       Any other loops that do not match the above criteria to	be  marked  as
       risky  or reasonable are	marked safe, and thus will be converted	if the
       required	confidence level is set	to safe	or lower.

	  int arr[] = {1,2,3};

	  for (int i = 0; i < 3; ++i)
	    cout << arr[i];

   Example
       Original:

	  const	int N =	5;
	  int arr[] = {1,2,3,4,5};
	  vector<int> v;
	  v.push_back(1);
	  v.push_back(2);
	  v.push_back(3);

	  // safe conversion
	  for (int i = 0; i < N; ++i)
	    cout << arr[i];

	  // reasonable	conversion
	  for (vector<int>::iterator it	= v.begin(); it	!= v.end(); ++it)
	    cout << *it;

	  // reasonable	conversion
	  for (int i = 0; i < v.size();	++i)
	    cout << v[i];

       After applying the check	with minimum confidence	level set  to  reason-
       able (default):

	  const	int N =	5;
	  int arr[] = {1,2,3,4,5};
	  vector<int> v;
	  v.push_back(1);
	  v.push_back(2);
	  v.push_back(3);

	  // safe conversion
	  for (auto & elem : arr)
	    cout << elem;

	  // reasonable	conversion
	  for (auto & elem : v)
	    cout << elem;

	  // reasonable	conversion
	  for (auto & elem : v)
	    cout << elem;

   Limitations
       There  are  certain  situations	where the tool may erroneously perform
       transformations that remove information and change semantics. Users  of
       the  tool should	be aware of the	behaviour and limitations of the check
       outlined	by the cases below.

   Comments inside loop	headers
       Comments	inside the original loop header	are ignored and	 deleted  when
       transformed.

	  for (int i = 0; i < N; /* This will be deleted */ ++i) { }

   Range-based loops evaluate end() only once
       The  C++11  range-based for loop	calls .end() only once during the ini-
       tialization of the loop.	If in the original loop	.end() is called after
       each iteration the semantics of the transformed loop may	differ.

	  // The following is semantically equivalent to the C++11 range-based for loop,
	  // therefore the semantics of	the header will	not change.
	  for (iterator	it = container.begin(),	e = container.end(); it	!= e; ++it) { }

	  // Instead of	calling	.end() after each iteration, this loop will be
	  // transformed to call .end()	only once during the initialization of the loop,
	  // which may affect semantics.
	  for (iterator	it = container.begin();	it != container.end(); ++it) { }

       As explained above, calling member functions of the  container  in  the
       body  of	 the  loop  is considered risky. If the	called member function
       modifies	the container the semantics of the converted loop will	differ
       due to .end() being called only once.

	  bool flag = false;
	  for (vector<T>::iterator it =	vec.begin(); it	!= vec.end(); ++it) {
	    // Add a copy of the first element to the end of the vector.
	    if (!flag) {
	      // This line makes this transformation 'risky'.
	      vec.push_back(*it);
	      flag = true;
	    }
	    cout << *it;
	  }

       The  original  code  above prints out the contents of the container in-
       cluding the newly added element while the converted loop, shown	below,
       will only print the original contents and not the newly added element.

	  bool flag = false;
	  for (auto & elem : vec) {
	    // Add a copy of the first element to the end of the vector.
	    if (!flag) {
	      // This line makes this transformation 'risky'
	      vec.push_back(elem);
	      flag = true;
	    }
	    cout << elem;
	  }

       Semantics  will	also be	affected if .end() has side effects. For exam-
       ple, in the case	where calls to .end() are logged  the  semantics  will
       change  in  the	transformed loop if .end() was originally called after
       each iteration.

	  iterator end() {
	    num_of_end_calls++;
	    return container.end();
	  }

   Overloaded operator->() with	side effects
       Similarly, if operator->() was overloaded to have side effects, such as
       logging,	the semantics will change. If the iterator's operator->()  was
       used  in	 the  original	loop  it will be replaced with <container ele-
       ment>.<member> instead due to the implicit dereference as part  of  the
       range-based  for	loop.  Therefore any side effect of the	overloaded op-
       erator->() will no longer be performed.

	  for (iterator	it = c.begin();	it != c.end(); ++it) {
	    it->func();	// Using operator->()
	  }
	  // Will be transformed to:
	  for (auto & elem : c)	{
	    elem.func(); // No longer using operator->()
	  }

   Pointers and	references to containers
       While most of the check's risk analysis	is  dedicated  to  determining
       whether	the  iterator or container was modified	within the loop, it is
       possible	to circumvent the analysis by accessing	and modifying the con-
       tainer through a	pointer	or reference.

       If the container	were directly used instead of  using  the  pointer  or
       reference  the following	transformation would have only been applied at
       the risky level since calling a member function	of  the	 container  is
       considered  risky.   The	 check	cannot identify	expressions associated
       with the	container that are different than the one  used	 in  the  loop
       header,	therefore  the transformation below ends up being performed at
       the safe	level.

	  vector<int> vec;

	  vector<int> *ptr = &vec;
	  vector<int> &ref = vec;

	  for (vector<int>::iterator it	= vec.begin(), e = vec.end(); it != e; ++it) {
	    if (!flag) {
	      // Accessing and modifying the container is considered risky, but	the risk
	      // level is not raised here.
	      ptr->push_back(*it);
	      ref.push_back(*it);
	      flag = true;
	    }
	  }

   OpenMP
       As range-based for loops	are only available since OpenMP	5, this	 check
       should  not  been  used	on  code  with a compatibility requirements of
       OpenMP prior to version 5. It is	intentional that this check  does  not
       make  any attempts to exclude incorrect diagnostics on OpenMP for loops
       prior to	OpenMP 5.

       To prevent this check to	be applied (and	to break) OpenMP for loops but
       still be	applied	to non-OpenMP for  loops  the  usage  of  NOLINT  (see
       Suppressing  Undesired Diagnostics) on the specific for loops is	recom-
       mended.

   modernize-make-shared
       This check finds	the creation of	std::shared_ptr	objects	by  explicitly
       calling	the  constructor  and a	new expression,	and replaces it	with a
       call to std::make_shared.

	  auto my_ptr =	std::shared_ptr<MyPair>(new MyPair(1, 2));

	  // becomes

	  auto my_ptr =	std::make_shared<MyPair>(1, 2);

       This check also finds calls to std::shared_ptr::reset() with a new  ex-
       pression, and replaces it with a	call to	std::make_shared.

	  my_ptr.reset(new MyPair(1, 2));

	  // becomes

	  my_ptr = std::make_shared<MyPair>(1, 2);

   Options
       MakeSmartPtrFunction
	      A	 string	 specifying  the name of make-shared-ptr function. De-
	      fault is std::make_shared.

       MakeSmartPtrFunctionHeader
	      A	string specifying the corresponding header of  make-shared-ptr
	      function.	 Default is memory.

       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

       IgnoreMacros
	      If  set  to  non-zero,  the  check will not give warnings	inside
	      macros. Default is 1.

   modernize-make-unique
       This check finds	the creation of	std::unique_ptr	objects	by  explicitly
       calling	the  constructor  and a	new expression,	and replaces it	with a
       call to std::make_unique, introduced in C++14.

	  auto my_ptr =	std::unique_ptr<MyPair>(new MyPair(1, 2));

	  // becomes

	  auto my_ptr =	std::make_unique<MyPair>(1, 2);

       This check also finds calls to std::unique_ptr::reset() with a new  ex-
       pression, and replaces it with a	call to	std::make_unique.

	  my_ptr.reset(new MyPair(1, 2));

	  // becomes

	  my_ptr = std::make_unique<MyPair>(1, 2);

   Options
       MakeSmartPtrFunction
	      A	 string	 specifying  the name of make-unique-ptr function. De-
	      fault is std::make_unique.

       MakeSmartPtrFunctionHeader
	      A	string specifying the corresponding header of  make-unique-ptr
	      function.	 Default is memory.

       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

       IgnoreMacros
	      If  set  to  non-zero,  the  check will not give warnings	inside
	      macros. Default is 1.

   modernize-pass-by-value
       With move semantics added to the	language and the standard library  up-
       dated with move constructors added for many types it is now interesting
       to  take	 an argument directly by value,	instead	of by const-reference,
       and then	copy. This check allows	the compiler to	take care of  choosing
       the best	way to construct the copy.

       The  transformation  is usually beneficial when the calling code	passes
       an rvalue and assumes the move construction is a	cheap operation.  This
       short example illustrates how the construction of the value happens:

	  void foo(std::string s);
	  std::string get_str();

	  void f(const std::string &str) {
	    foo(str);	    // lvalue  -> copy construction
	    foo(get_str()); // prvalue -> move construction
	  }

       NOTE:
	  Currently,   only  constructors  are	transformed  to	 make  use  of
	  pass-by-value.  Contributions	that handle other situations are  wel-
	  come!

   Pass-by-value in constructors
       Replaces	 the  uses of const-references constructor parameters that are
       copied into class fields. The parameter is then moved with std::move().

       Since std::move() is a library function declared	in <utility> it	may be
       necessary to add	this include. The check	will add the include directive
       when necessary.

	   #include <string>

	   class Foo {
	   public:
	  -  Foo(const std::string &Copied, const std::string &ReadOnly)
	  -    : Copied(Copied), ReadOnly(ReadOnly)
	  +  Foo(std::string Copied, const std::string &ReadOnly)
	  +    : Copied(std::move(Copied)), ReadOnly(ReadOnly)
	     {}

	   private:
	     std::string Copied;
	     const std::string &ReadOnly;
	   };

	   std::string get_cwd();

	   void	f(const	std::string &Path) {
	     //	The parameter corresponding to 'get_cwd()' is move-constructed.	By
	     //	using pass-by-value in the Foo constructor we managed to avoid a
	     //	copy-construction.
	     Foo foo(get_cwd(),	Path);
	   }

       If the parameter	is used	more than once no transformation is  performed
       since  moved  objects  have  an undefined state.	It means the following
       code will be left untouched:

	  #include <string>

	  void pass(const std::string &S);

	  struct Foo {
	    Foo(const std::string &S) :	Str(S) {
	      pass(S);
	    }

	    std::string	Str;
	  };

   Known limitations
       A situation where the generated code can	be wrong is  when  the	object
       referenced is modified before the assignment in the init-list through a
       "hidden"	reference.

       Example:

	   std::string s("foo");

	   struct Base {
	     Base() {
	       s = "bar";
	     }
	   };

	   struct Derived : Base {
	  -  Derived(const std::string &S) : Field(S)
	  +  Derived(std::string S) : Field(std::move(S))
	     { }

	     std::string Field;
	   };

	   void	f() {
	  -  Derived d(s); // d.Field holds "bar"
	  +  Derived d(s); // d.Field holds "foo"
	   }

   Note	about delayed template parsing
       When  delayed  template	parsing	 is enabled, constructors part of tem-
       plated contexts;	templated constructors,	 constructors  in  class  tem-
       plates,	constructors  of  inner	classes	of template classes, etc., are
       not transformed.	Delayed	template parsing is enabled by default on Win-
       dows as a Microsoft extension: Clang Compiler Users Manual -  Microsoft
       extensions.

       Delayed	template  parsing  can	be  enabled  using  the	-fdelayed-tem-
       plate-parsing flag and disabled using -fno-delayed-template-parsing.

       Example:

	    template <typename T> class	C {
	      std::string S;

	    public:
	  =  //	using -fdelayed-template-parsing (default on Windows)
	  =  C(const std::string &S) : S(S) {}

	  +  //	using -fno-delayed-template-parsing (default on	non-Windows systems)
	  +  C(std::string S) :	S(std::move(S))	{}
	    };

       SEE ALSO:
	  For more information	about  the  pass-by-value  idiom,  read:  Want
	  Speed? Pass by Value.

   Options
       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

       ValuesOnly
	      When non-zero, the check only warns about	copied parameters that
	      are already passed by value. Default is 0.

   modernize-raw-string-literal
       This  check  selectively	 replaces  string  literals containing escaped
       characters with raw string literals.

       Example:

	  const	char *const Quotes{"embedded \"quotes\""};
	  const	char *const Paragraph{"Line one.\nLine two.\nLine three.\n"};
	  const	char *const SingleLine{"Single line.\n"};
	  const	char *const TrailingSpace{"Look	here ->	\n"};
	  const	char *const Tab{"One\tTwo\n"};
	  const	char *const Bell{"Hello!\a  And	welcome!"};
	  const	char *const Path{"C:\\Program Files\\Vendor\\Application.exe"};
	  const	char *const RegEx{"\\w\\([a-z]\\)"};

       becomes

	  const	char *const Quotes{R"(embedded "quotes")"};
	  const	char *const Paragraph{"Line one.\nLine two.\nLine three.\n"};
	  const	char *const SingleLine{"Single line.\n"};
	  const	char *const TrailingSpace{"Look	here ->	\n"};
	  const	char *const Tab{"One\tTwo\n"};
	  const	char *const Bell{"Hello!\a  And	welcome!"};
	  const	char *const Path{R"(C:\Program Files\Vendor\Application.exe)"};
	  const	char *const RegEx{R"(\w\([a-z]\))"};

       The presence of any of the following escapes can	cause the string to be
       converted to a raw string literal: \\, \', \", \?, and octal  or	 hexa-
       decimal escapes for printable ASCII characters.

       A  string  literal  containing only escaped newlines is a common	way of
       writing lines of	text output. Introducing physical  newlines  with  raw
       string  literals	 in  this  case	is likely to impede readability. These
       string literals are left	unchanged.

       An escaped horizontal tab, form feed,  or  vertical  tab	 prevents  the
       string  literal from being converted. The presence of a horizontal tab,
       form feed or vertical tab in source code	is not visually	obvious.

   modernize-redundant-void-arg
       Find and	remove redundant void argument lists.

       Examples:
		 +----------------------------+-------------------------+
		 | Initial code		      |	Code with applied fixes	|
		 +----------------------------+-------------------------+
		 | int f(void);		      |	int f();		|
		 +----------------------------+-------------------------+
		 | int (*f(void))(void);      |	int (*f())();		|
		 +----------------------------+-------------------------+
		 | typedef		  int |	typedef	int (*f_t())();	|
		 | (*f_t(void))(void);	      |				|
		 +----------------------------+-------------------------+
		 | void	(C::*p)(void);	      |	void (C::*p)();		|
		 +----------------------------+-------------------------+
		 | C::C(void) {}	      |	C::C() {}		|
		 +----------------------------+-------------------------+
		 | C::~C(void) {}	      |	C::~C()	{}		|
		 +----------------------------+-------------------------+

   modernize-replace-auto-ptr
       This  check  replaces the uses of the deprecated	class std::auto_ptr by
       std::unique_ptr (introduced in C++11). The transfer of ownership,  done
       by  the	copy-constructor  and  the  assignment operator, is changed to
       match std::unique_ptr usage by using explicit calls to std::move().

       Migration example:

	  -void	take_ownership_fn(std::auto_ptr<int> int_ptr);
	  +void	take_ownership_fn(std::unique_ptr<int> int_ptr);

	   void	f(int x) {
	  -  std::auto_ptr<int>	a(new int(x));
	  -  std::auto_ptr<int>	b;
	  +  std::unique_ptr<int> a(new	int(x));
	  +  std::unique_ptr<int> b;

	  -  b = a;
	  -  take_ownership_fn(b);
	  +  b = std::move(a);
	  +  take_ownership_fn(std::move(b));
	   }

       Since std::move() is a library function declared	in <utility> it	may be
       necessary to add	this include. The check	will add the include directive
       when necessary.

   Known Limitations
        If headers modification is not	activated or if	a header  is  not  al-
	 lowed	to be changed this check will produce broken code (compilation
	 error), where the headers' code will stay unchanged  while  the  code
	 using them will be changed.

        Client	code that declares a reference to an std::auto_ptr coming from
	 code that can't be migrated (such as a	header coming from a 3rd party
	 library)  will	 produce  a compilation	error after migration. This is
	 because the type of the reference will	be changed to  std::unique_ptr
	 but  the  type	returned by the	library	won't change, binding a	refer-
	 ence to std::unique_ptr from an std::auto_ptr.	This  pattern  doesn't
	 make much sense and usually std::auto_ptr are stored by value (other-
	 wise  what  is	 the  point  in	using them instead of a	reference or a
	 pointer?).

	   // <3rd-party header...>
	   std::auto_ptr<int> get_value();
	   const std::auto_ptr<int> & get_ref();

	   // <calling code (with migration)...>
	  -std::auto_ptr<int> a(get_value());
	  +std::unique_ptr<int>	a(get_value());	// ok, unique_ptr constructed from auto_ptr

	  -const std::auto_ptr<int> & p	= get_ptr();
	  +const std::unique_ptr<int> &	p = get_ptr(); // won't	compile

        Non-instantiated templates aren't modified.

	  template <typename X>
	  void f() {
	      std::auto_ptr<X> p;
	  }

	  // only 'f<int>()' (or similar) will trigger the replacement.

   Options
       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

   modernize-replace-disallow-copy-and-assign-macro
       Finds macro expansions of DISALLOW_COPY_AND_ASSIGN(Type)	 and  replaces
       them with a deleted copy	constructor and	a deleted assignment operator.

       Before  the  delete keyword was introduced in C++11 it was common prac-
       tice to declare a copy constructor and an assignment operator as	a pri-
       vate members. This effectively makes them unusable to the public	API of
       a class.

       With the	advent of the delete keyword in	C++11 we can abandon the  pri-
       vate  access  of	 the  copy constructor and the assignment operator and
       delete the methods entirely.

       When running this check on a code like this:

	  class	Foo {
	  private:
	    DISALLOW_COPY_AND_ASSIGN(Foo);
	  };

       It will be transformed to this:

	  class	Foo {
	  private:
	    Foo(const Foo &) = delete;
	    const Foo &operator=(const Foo &) =	delete;
	  };

   Known Limitations
        Notice	that the migration example above  leaves  the  private	access
	 specification	untouched. You might want to run the check:doc:modern-
	 ize-use-equals-delete <modernize-use-equals-delete> to	 get  warnings
	 for deleted functions in private sections.

   Options
       MacroName
	      A	 string	 specifying the	macro name whose expansion will	be re-
	      placed.  Default is DISALLOW_COPY_AND_ASSIGN.

       See:
       https://en.cppreference.com/w/cpp/language/function#Deleted_functions

   modernize-replace-random-shuffle
       This check will find occurrences	of std::random_shuffle and replace  it
       with  std::shuffle.  In	C++17  std::random_shuffle  will  no longer be
       available and thus we need to replace it.

       Below are two examples of what kind of occurrences will	be  found  and
       two examples of what it will be replaced	with.

	  std::vector<int> v;

	  // First example
	  std::random_shuffle(vec.begin(), vec.end());

	  // Second example
	  std::random_shuffle(vec.begin(), vec.end(), randomFunc);

       Both of these examples will be replaced with:

	  std::shuffle(vec.begin(), vec.end(), std::mt19937(std::random_device()()));

       The  second  example  will also receive a warning that randomFunc is no
       longer supported	in the same way	as before so if	 the  user  wants  the
       same  functionality, the	user will need to change the implementation of
       the randomFunc.

       One thing to be aware of	here is	that std::random_device	is  quite  ex-
       pensive	to  initialize.	 So if you are using the code in a performance
       critical	place, you probably want to initialize it elsewhere.   Another
       thing  is  that the seeding quality of the suggested fix	is quite poor:
       std::mt19937 has	an internal state of 624 32-bit	integers, but is  only
       seeded  with a single integer. So if you	require	higher quality random-
       ness, you should	consider seeding better, for example:

	  std::shuffle(v.begin(), v.end(), []()	{
	    std::mt19937::result_type seeds[std::mt19937::state_size];
	    std::random_device device;
	    std::uniform_int_distribution<typename std::mt19937::result_type> dist;
	    std::generate(std::begin(seeds), std::end(seeds), [&] { return dist(device); });
	    std::seed_seq seq(std::begin(seeds), std::end(seeds));
	    return std::mt19937(seq);
	  }());

   modernize-return-braced-init-list
       Replaces	explicit calls to the constructor in a return  with  a	braced
       initializer list. This way the return type is not needlessly duplicated
       in the function definition and the return statement.

	  Foo bar() {
	    Baz	baz;
	    return Foo(baz);
	  }

	  // transforms	to:

	  Foo bar() {
	    Baz	baz;
	    return {baz};
	  }

   modernize-shrink-to-fit
       Replace	copy  and  swap	 tricks	 on  shrinkable	 containers  with  the
       shrink_to_fit() method call.

       The shrink_to_fit() method is more readable and more effective than the
       copy and	swap trick to reduce the capacity of a	shrinkable  container.
       Note  that,  the	 shrink_to_fit() method	is only	available in C++11 and
       up.

   modernize-unary-static-assert
       The check diagnoses any static_assert declaration with an empty	string
       literal	and  provides  a fix-it	to replace the declaration with	a sin-
       gle-argument static_assert declaration.

       The check is only applicable for	C++17 and later	code.

       The following code:

	  void f_textless(int a) {
	    static_assert(sizeof(a) <= 10, "");
	  }

       is replaced by:

	  void f_textless(int a) {
	    static_assert(sizeof(a) <= 10);
	  }

   modernize-use-auto
       This check is responsible for using the auto type specifier  for	 vari-
       able  declarations to improve code readability and maintainability. For
       example:

	  std::vector<int>::iterator I = my_container.begin();

	  // transforms	to:

	  auto I = my_container.begin();

       The auto	type specifier will only be introduced in situations where the
       variable	type matches the type of the initializer expression. In	 other
       words  auto  should deduce the same type	that was originally spelled in
       the source.  However, not every situation should	be transformed:

	  int val = 42;
	  InfoStruct &I	= SomeObject.getInfo();

	  // Should not	become:

	  auto val = 42;
	  auto &I = SomeObject.getInfo();

       In this example using auto for builtins doesn't improve readability. In
       other situations	it makes  the  code  less  self-documenting  impairing
       readability  and	maintainability. As a result, auto is used only	intro-
       duced in	specific situations described below.

   Iterators
       Iterator	type specifiers	tend to	be long	 and  used  frequently,	 espe-
       cially  in  loop	 constructs.  Since the	functions generating iterators
       have a common format, the type specifier	can be	replaced  without  ob-
       scuring	the  meaning of	code while improving readability and maintain-
       ability.

	  for (std::vector<int>::iterator I = my_container.begin(),
					  E = my_container.end();
	       I != E; ++I) {
	  }

	  // becomes

	  for (auto I =	my_container.begin(), E	= my_container.end(); I	!= E; ++I) {
	  }

       The check will only replace iterator type-specifiers when  all  of  the
       following conditions are	satisfied:

        The iterator is for one of the	standard container in std namespace:

	  array

	  deque

	  forward_list

	  list

	  vector

	  map

	  multimap

	  set

	  multiset

	  unordered_map

	  unordered_multimap

	  unordered_set

	  unordered_multiset

	  queue

	  priority_queue

	  stack

        The  iterator is one of the possible iterator types for standard con-
	 tainers:

	  iterator

	  reverse_iterator

	  const_iterator

	  const_reverse_iterator

        In addition to	using iterator types directly, typedefs	or other  ways
	 of  referring	to  those types	are also allowed. However, implementa-
	 tion-specific types for which a type like  std::vector<int>::iterator
	 is  itself  a typedef will not	be transformed.	Consider the following
	 examples:

	  // The following direct uses of iterator types will be transformed.
	  std::vector<int>::iterator I = MyVec.begin();
	  {
	    using namespace std;
	    list<int>::iterator	I = MyList.begin();
	  }

	  // The type specifier	for J would transform to auto since it's a typedef
	  // to	a standard iterator type.
	  typedef std::map<int,	std::string>::const_iterator map_iterator;
	  map_iterator J = MyMap.begin();

	  // The following implementation-specific iterator type for which
	  // std::vector<int>::iterator	could be a typedef would not be	transformed.
	  __gnu_cxx::__normal_iterator<int*, std::vector> K = MyVec.begin();

        The initializer for the variable being	declared is not	a braced  ini-
	 tializer  list.  Otherwise,  use  of auto would cause the type	of the
	 variable to be	deduced	as std::initializer_list.

   New expressions
       Frequently, when	a pointer is declared and initialized  with  new,  the
       pointee	type  is written twice:	in the declaration type	and in the new
       expression. In this cases, the declaration type can  be	replaced  with
       auto improving readability and maintainability.

	  TypeName *my_pointer = new TypeName(my_param);

	  // becomes

	  auto *my_pointer = new TypeName(my_param);

       The  check  will	also replace the declaration type in multiple declara-
       tions, if the following conditions are satisfied:

        All declared variables	have the same  type  (i.e.  all	 of  them  are
	 pointers to the same type).

        All declared variables	are initialized	with a new expression.

        The types of all the new expressions are the same than	the pointee of
	 the declaration type.

	  TypeName *my_first_pointer = new TypeName, *my_second_pointer	= new TypeName;

	  // becomes

	  auto *my_first_pointer = new TypeName, *my_second_pointer = new TypeName;

   Cast	expressions
       Frequently,  when  a  variable is declared and initialized with a cast,
       the variable type is written twice: in the declaration type and in  the
       cast  expression.  In  this cases, the declaration type can be replaced
       with auto improving readability and maintainability.

	  TypeName *my_pointer = static_cast<TypeName>(my_param);

	  // becomes

	  auto *my_pointer = static_cast<TypeName>(my_param);

       The  check  handles  static_cast,  dynamic_cast,	 const_cast,  reinter-
       pret_cast,  functional casts, C-style casts and function	templates that
       behave  as  casts,  such	 as  llvm::dyn_cast,  boost::lexical_cast  and
       gsl::narrow_cast.  Calls	to function templates are considered to	behave
       as  casts if the	first template argument	is explicit and	is a type, and
       the function returns that type, or a pointer or reference to it.

   Known Limitations
        If the	initializer is an explicit conversion constructor,  the	 check
	 will  not  replace the	type specifier even though it would be safe to
	 do so.

        User-defined iterators	are not	handled	at this	time.

   Options
       MinTypeNameLength
	      If the option is set to non-zero (default	5), the	check will ig-
	      nore type	names having a length less than	the option value.  The
	      option  affects expressions only,	not iterators.	Spaces between
	      multi-lexeme type	names (long int) are considered	 as  one.   If
	      RemoveStars  option  (see	 below)	is set to non-zero, then *s in
	      the type are also	counted	as a part of the type name.

	  // MinTypeNameLength = 0, RemoveStars=0

	  int a	= static_cast<int>(foo());	      // ---> auto a = ...
	  // length(bool *) = 4
	  bool *b = new	bool;			      // ---> auto *b =	...
	  unsigned c = static_cast<unsigned>(foo());  // ---> auto c = ...

	  // MinTypeNameLength = 5, RemoveStars=0

	  int a	= static_cast<int>(foo());		   // ---> int	a = ...
	  bool b = static_cast<bool>(foo());		   // ---> bool	b = ...
	  bool *pb = static_cast<bool*>(foo());		   // ---> bool	*pb = ...
	  unsigned c = static_cast<unsigned>(foo());	   // ---> auto	c = ...
	  // length(long <on-or-more-spaces> int) = 8
	  long int d = static_cast<long	int>(foo());	   // ---> auto	d = ...

	  // MinTypeNameLength = 5, RemoveStars=1

	  int a	= static_cast<int>(foo());		   // ---> int	a = ...
	  // length(int	* * ) =	5
	  int **pa = static_cast<int**>(foo());		   // ---> auto	pa = ...
	  bool b = static_cast<bool>(foo());		   // ---> bool	b = ...
	  bool *pb = static_cast<bool*>(foo());		   // ---> auto	pb = ...
	  unsigned c = static_cast<unsigned>(foo());	   // ---> auto	c = ...
	  long int d = static_cast<long	int>(foo());	   // ---> auto	d = ...

       RemoveStars
	      If the option is set to non-zero (default	is 0), the check  will
	      remove  stars  from the non-typedef pointer types	when replacing
	      type names with auto. Otherwise, the check will leave stars. For
	      example:

	  TypeName *my_first_pointer = new TypeName, *my_second_pointer	= new TypeName;

	  // RemoveStars = 0

	  auto *my_first_pointer = new TypeName, *my_second_pointer = new TypeName;

	  // RemoveStars = 1

	  auto my_first_pointer	= new TypeName,	my_second_pointer = new	TypeName;

   modernize-use-bool-literals
       Finds integer literals which are	cast to	bool.

	  bool p = 1;
	  bool f = static_cast<bool>(1);
	  std::ios_base::sync_with_stdio(0);
	  bool x = p ? 1 : 0;

	  // transforms	to

	  bool p = true;
	  bool f = true;
	  std::ios_base::sync_with_stdio(false);
	  bool x = p ? true : false;

   Options
       IgnoreMacros
	      If set to	non-zero, the check  will  not	give  warnings	inside
	      macros. Default is 1.

   modernize-use-default
       This check has been renamed to modernize-use-equals-default.

   modernize-use-default-member-init
       This  check  converts  a	default	constructor's member initializers into
       the new default member initializers in C++11. Other member initializers
       that match the default member initializer are removed. This can	reduce
       repeated	code or	allow use of '=	default'.

	  struct A {
	    A()	: i(5),	j(10.0)	{}
	    A(int i) : i(i), j(10.0) {}
	    int	i;
	    double j;
	  };

	  // becomes

	  struct A {
	    A()	{}
	    A(int i) : i(i) {}
	    int	i{5};
	    double j{10.0};
	  };

       NOTE:
	  Only	converts  member  initializers	for built-in types, enums, and
	  pointers.  The readability-redundant-member-init check  will	remove
	  redundant member initializers	for classes.

   Options
       UseAssignment
	      If this option is	set to non-zero	(default is 0),	the check will
	      initialise members with an assignment. For example:

	  struct A {
	    A()	{}
	    A(int i) : i(i) {}
	    int	i = 5;
	    double j = 10.0;
	  };

       IgnoreMacros
	      If this option is	set to non-zero	(default is 1),	the check will
	      not warn about members declared inside macros.

   modernize-use-emplace
       The  check  flags  insertions to	an STL-style container done by calling
       the push_back method with an explicitly-constructed  temporary  of  the
       container  element  type.  In this case,	the corresponding emplace_back
       method results in less verbose and  potentially	more  efficient	 code.
       Right  now  the	check  doesn't support push_front and insert.  It also
       doesn't support insert functions	for associative	containers because re-
       placing insert with emplace may result  in  speed  regression,  but  it
       might get support with some addition flag in the	future.

       By  default  only  std::vector,	std::deque,  std::list are considered.
       This list can be	modified using the ContainersWithPushBack option.

       Before:

	  std::vector<MyClass> v;
	  v.push_back(MyClass(21, 37));

	  std::vector<std::pair<int, int>> w;

	  w.push_back(std::pair<int, int>(21, 37));
	  w.push_back(std::make_pair(21L, 37L));

       After:

	  std::vector<MyClass> v;
	  v.emplace_back(21, 37);

	  std::vector<std::pair<int, int>> w;
	  w.emplace_back(21, 37);
	  w.emplace_back(21L, 37L);

       By default, the check is	able to	remove unnecessary std::make_pair  and
       std::make_tuple	calls  from push_back calls on containers of std::pair
       and  std::tuple.	 Custom	 tuple-like  types  can	 be  modified  by  the
       TupleTypes  option;  custom  make  functions  can  be  modified	by the
       TupleMakeFunctions option.

       The other situation is when we pass arguments that will be converted to
       a type inside a container.

       Before:

	  std::vector<boost::optional<std::string> > v;
	  v.push_back("abc");

       After:

	  std::vector<boost::optional<std::string> > v;
	  v.emplace_back("abc");

       In some cases the transformation	would be valid,	but the	code  wouldn't
       be  exception  safe.  In	 this case the calls of	push_back won't	be re-
       placed.

	  std::vector<std::unique_ptr<int>> v;
	  v.push_back(std::unique_ptr<int>(new int(0)));
	  auto *ptr = new int(1);
	  v.push_back(std::unique_ptr<int>(ptr));

       This is because replacing it with emplace_back could cause  a  leak  of
       this  pointer  if emplace_back would throw exception before emplacement
       (e.g. not enough	memory to add a	new element).

       For more	info read item 42 - "Consider emplacement  instead  of	inser-
       tion." of Scott Meyers "Effective Modern	C++".

       The  default  smart  pointers  that are considered are std::unique_ptr,
       std::shared_ptr,	std::auto_ptr. To  specify  other  smart  pointers  or
       other classes use the SmartPointers option.

       Check  also  doesn't fire if any	argument of the	constructor call would
       be:

	   a bit-field	(bit-fields can't bind to rvalue/universal reference)

	   a new expression (to avoid leak)

	   if the argument would be converted via derived-to-base cast.

       This check requires C++11 or higher to run.

   Options
       ContainersWithPushBack
	      Semicolon-separated list of class	 names	of  custom  containers
	      that support push_back.

       IgnoreImplicitConstructors
	      When  non-zero, the check	will ignore implicitly constructed ar-
	      guments of push_back, e.g.

		 std::vector<std::string> v;
		 v.push_back("a"); // Ignored when IgnoreImplicitConstructors is ``1``.

	      Default is 0.

       SmartPointers
	      Semicolon-separated list of class	names of custom	 smart	point-
	      ers.

       TupleTypes
	      Semicolon-separated list of std::tuple-like class	names.

       TupleMakeFunctions
	      Semicolon-separated list of std::make_tuple-like function	names.
	      Those  function  calls  will be removed from push_back calls and
	      turned into emplace_back.

   Example
	  std::vector<MyTuple<int, bool, char>>	x;
	  x.push_back(MakeMyTuple(1, false, 'x'));

       transforms to:

	  std::vector<MyTuple<int, bool, char>>	x;
	  x.emplace_back(1, false, 'x');

       when TupleTypes is set to MyTuple  and  TupleMakeFunctions  is  set  to
       MakeMyTuple.

   modernize-use-equals-default
       This  check  replaces default bodies of special member functions	with =
       default;. The explicitly	defaulted function  declarations  enable  more
       opportunities in	optimization, because the compiler might treat explic-
       itly defaulted functions	as trivial.

	  struct A {
	    A()	{}
	    ~A();
	  };
	  A::~A() {}

	  // becomes

	  struct A {
	    A()	= default;
	    ~A();
	  };
	  A::~A() = default;

       NOTE:
	  Move-constructor and move-assignment operator	are not	supported yet.

   Options
       IgnoreMacros
	      If  set  to  non-zero,  the  check will not give warnings	inside
	      macros. Default is 1.

   modernize-use-equals-delete
       This check marks	unimplemented private special member functions with  =
       delete.	 To avoid false-positives, this	check only applies in a	trans-
       lation unit that	has all	other member functions implemented.

	  struct A {
	  private:
	    A(const A&);
	    A& operator=(const A&);
	  };

	  // becomes

	  struct A {
	  private:
	    A(const A&)	= delete;
	    A& operator=(const A&) = delete;
	  };

       IgnoreMacros
	      If this option is	set to non-zero	(default is 1),	the check will
	      not warn about functions declared	inside macros.

   modernize-use-nodiscard
       Adds [[nodiscard]] attributes (introduced in C++17) to member functions
       in order	to highlight at	compile	time which return values should	not be
       ignored.

       Member functions	need to	satisfy	the following conditions to be consid-
       ered by this check:

	   no	[[nodiscard]],	[[noreturn]],	__attribute__((warn_unused_re-
	    sult)),  [[clang::warn_unused_result]]  nor	[[gcc::warn_unused_re-
	    sult]] attribute,

	   non-void return type,

	   non-template return	types,

	   const member function,

	   non-variadic functions,

	   no non-const reference parameters,

	   no pointer parameters,

	   no template	parameters,

	   no template	function parameters,

	   not	be a member of a class with mutable member variables,

	   no Lambdas,

	   no conversion functions.

       Such functions have no means of altering	any state  or  passing	values
       other  than via the return type.	Unless the member functions are	alter-
       ing state via some external call	(e.g. I/O).

   Example
	  bool empty() const;
	  bool empty(int i) const;

       transforms to:

	  [[nodiscard] bool empty() const;
	  [[nodiscard] bool empty(int i) const;

   Options
       ReplacementString
	      Specifies	a macro	to use instead of [[nodiscard]]. This is  use-
	      ful  when	 maintaining  source code that needs to	compile	with a
	      pre-C++17	compiler.

   Example
	  bool empty() const;
	  bool empty(int i) const;

       transforms to:

	  NO_DISCARD bool empty() const;
	  NO_DISCARD bool empty(int i) const;

       if the ReplacementString	option is set to NO_DISCARD.

       NOTE:
	  If the ReplacementString is not  a  C++  attribute,  but  instead  a
	  macro,  then	that macro must	be defined in scope or the fix-it will
	  not be applied.

       NOTE:
	  For alternative __attribute__	syntax options to  mark	 functions  as
	  [[nodiscard]]	     in	     non-c++17	    source	code.	   See
	  https://clang.llvm.org/docs/AttributeReference.html#nodiscard-warn-unused-result

   modernize-use-noexcept
       This check replaces deprecated dynamic  exception  specifications  with
       the  appropriate	 noexcept specification	(introduced in C++11).	By de-
       fault this check	will replace throw() with noexcept, and	 throw(<excep-
       tion>[,...]) or throw(...) with noexcept(false).

   Example
	  void foo() throw();
		void bar() throw(int) {}

       transforms to:

	  void foo() noexcept;
		void bar() noexcept(false) {}

   Options
       ReplacementString

       Users  can  use	ReplacementString to specify a macro to	use instead of
       noexcept.  This is useful when maintaining source code that uses	custom
       exception specification marking other than noexcept.  Fix-it hints will
       only be generated for non-throwing specifications.

   Example
	  void bar() throw(int);
	  void foo() throw();

       transforms to:

	  void bar() throw(int);  // No	fix-it generated.
	  void foo() NOEXCEPT;

       if the ReplacementString	option is set to NOEXCEPT.

       UseNoexceptFalse

       Enabled by default, disabling will generate fix-it  hints  that	remove
       throwing	 dynamic exception specs, e.g.,	throw(<something>), completely
       without providing a replacement text, except for	destructors and	delete
       operators that are noexcept(true) by default.

   Example
	  void foo() throw(int)	{}

	  struct bar {
	    void foobar() throw(int);
	    void operator delete(void *ptr) throw(int);
	    void operator delete[](void	*ptr) throw(int);
	    ~bar() throw(int);
	  }

       transforms to:

	  void foo() {}

	  struct bar {
	    void foobar();
	    void operator delete(void *ptr) noexcept(false);
	    void operator delete[](void	*ptr) noexcept(false);
	    ~bar() noexcept(false);
	  }

       if the UseNoexceptFalse option is set to	0.

   modernize-use-nullptr
       The check converts the usage of null pointer constants (eg. NULL, 0) to
       use the new C++11 nullptr keyword.

   Example
	  void assignment() {
	    char *a = NULL;
	    char *b = 0;
	    char c = 0;
	  }

	  int *ret_ptr() {
	    return 0;
	  }

       transforms to:

	  void assignment() {
	    char *a = nullptr;
	    char *b = nullptr;
	    char c = 0;
	  }

	  int *ret_ptr() {
	    return nullptr;
	  }

   Options
       NullMacros
	      Comma-separated list of macro names  that	 will  be  transformed
	      along  with  NULL.  By  default this check will only replace the
	      NULL macro and will skip any similar user-defined	macros.

   Example
	  #define MY_NULL (void*)0
	  void assignment() {
	    void *p = MY_NULL;
	  }

       transforms to:

	  #define MY_NULL NULL
	  void assignment() {
	    int	*p = nullptr;
	  }

       if the NullMacros option	is set to MY_NULL.

   modernize-use-override
       Adds override (introduced in C++11) to overridden virtual functions and
       removes virtual from those functions as it is not required.

       virtual on non base class implementations was used to help indicate  to
       the  user  that	a  function was	virtual. C++ compilers did not use the
       presence	of this	to signify an overridden function.

       In C++ 11 override and final keywords were introduced to	allow overrid-
       den functions to	be marked appropriately. Their presence	allows compil-
       ers to verify that an overridden	function correctly  overrides  a  base
       class implementation.

       This can	be useful as compilers can generate a compile time error when:

	   The	base class implementation function signature changes.

	   The	user has not created the override with the correct signature.

   Options
       IgnoreDestructors
	      If  set  to  non-zero, this check	will not diagnose destructors.
	      Default is 0.

       AllowOverrideAndFinal
	      If set to	non-zero, this check will not diagnose override	as re-
	      dundant with final. This is useful when code will	be compiled by
	      a	compiler with warning/error checking flags requiring  override
	      explicitly  on  overridden  members, such	as gcc -Wsuggest-over-
	      ride/gcc -Werror=suggest-override.  Default is 0.

       OverrideSpelling
	      Specifies	a macro	to use instead of  override.  This  is	useful
	      when  maintaining	 source	code that also needs to	compile	with a
	      pre-C++11	compiler.

       FinalSpelling
	      Specifies	a macro	to use instead of final. This is  useful  when
	      maintaining  source  code	 that  also  needs  to	compile	with a
	      pre-C++11	compiler.

       NOTE:
	  For	more   information   on	   the	  use	 of    override	   see
	  https://en.cppreference.com/w/cpp/language/override

   modernize-use-trailing-return-type
       Rewrites	 function signatures to	use a trailing return type (introduced
       in C++11). This transformation is purely	stylistic.   The  return  type
       before  the  function  name  is replaced	by auto	and inserted after the
       function	parameter list (and qualifiers).

   Example
	  int f1();
	  inline int f2(int arg) noexcept;
	  virtual float	f3() const && =	delete;

       transforms to:

	  auto f1() -> int;
	  inline auto f2(int arg) -> int noexcept;
	  virtual auto f3() const && ->	float =	delete;

   Known Limitations
       The following categories	of return types	cannot be rewritten currently:
       * function pointers * member function pointers *	member pointers	*  de-
       cltype, when it is the top level	expression

       Unqualified names in the	return type might erroneously refer to differ-
       ent entities after the rewrite.	Preventing such	errors requires	a full
       lookup of all unqualified names present in the return type in the scope
       of  the	trailing  return  type	location.  This	location includes e.g.
       function	parameter names	and members of the enclosing class  (including
       all inherited classes).	Such a lookup is currently not implemented.

       Given the following piece of code

	  struct Object	{ long long value; };
	  Object f(unsigned Object) { return {Object * 2}; }
	  class	CC {
	    int	Object;
	    struct Object m();
	  };
	  Object CC::m() { return {0}; }

       a careless rewrite would	produce	the following output:

	  struct Object	{ long long value; };
	  auto f(unsigned Object) -> Object { return {Object * 2}; } //	error
	  class	CC {
	    int	Object;
	    auto m() ->	struct Object;
	  };
	  auto CC::m() -> Object { return {0}; } // error

       This  code  fails  to  compile  because	the Object in the context of f
       refers to the equally named function parameter.	Similarly, the	Object
       in  the	context	 of  m	refers to the equally named class member.  The
       check can currently only	detect a clash with a function parameter name.

   modernize-use-transparent-functors
       Prefer transparent functors to non-transparent ones. When using	trans-
       parent  functors,  the  type  does not need to be repeated. The code is
       easier to read, maintain	and less prone to errors. It is	 not  possible
       to introduce unwanted conversions.

	  // Non-transparent functor
	  std::map<int,	std::string, std::greater<int>>	s;

	  // Transparent functor.
	  std::map<int,	std::string, std::greater<>> s;

	  // Non-transparent functor
	  using	MyFunctor = std::less<MyType>;

       It  is not always a safe	transformation though. The following case will
       be untouched to preserve	the semantics.

	  // Non-transparent functor
	  std::map<const char *, std::string, std::greater<std::string>> s;

   Options
       SafeMode
	      If the option is set to non-zero,	the check  will	 not  diagnose
	      cases  where using a transparent functor cannot be guaranteed to
	      produce identical	results	as  the	 original  code.  The  default
	      value for	this option is 0.

       This check requires using C++14 or higher to run.

   modernize-use-uncaught-exceptions
       This  check  will  warn on calls	to std::uncaught_exception and replace
       them with calls to std::uncaught_exceptions, since std::uncaught_excep-
       tion was	deprecated in C++17.

       Below are a few examples	of what	kind of	occurrences will be found  and
       what they will be replaced with.

	  #define MACRO1 std::uncaught_exception
	  #define MACRO2 std::uncaught_exception

	  int uncaught_exception() {
		  return 0;
	  }

	  int main() {
		  int res;

	    res	= uncaught_exception();
	    // No warning, since it is not the deprecated function from	namespace std

	    res	= MACRO2();
	    // Warning,	but will not be	replaced

	    res	= std::uncaught_exception();
	    // Warning and replaced

	    using std::uncaught_exception;
	    // Warning and replaced

	    res	= uncaught_exception();
	    // Warning and replaced
	  }

       After applying the fixes	the code will look like	the following:

	  #define MACRO1 std::uncaught_exception
	  #define MACRO2 std::uncaught_exception

	  int uncaught_exception() {
		  return 0;
	  }

	  int main() {
	    int	res;

	    res	= uncaught_exception();

	    res	= MACRO2();

	    res	= std::uncaught_exceptions();

	    using std::uncaught_exceptions;

	    res	= uncaught_exceptions();
	  }

   modernize-use-using
       The check converts the usage of typedef with using keyword.

       Before:

	  typedef int variable;

	  class	Class{};
	  typedef void (Class::* MyPtrType)() const;

	  typedef struct { int a; } R_t, *R_p;

       After:

	  using	variable = int;

	  class	Class{};
	  using	MyPtrType = void (Class::*)() const;

	  using	R_t = struct { int a; };
	  using	R_p = R_t*;

       This check requires using C++11 or higher to run.

   Options
       IgnoreMacros
	      If  set  to  non-zero,  the  check will not give warnings	inside
	      macros. Default is 1.

   mpi-buffer-deref
       This check verifies if a	buffer passed to an MPI	(Message  Passing  In-
       terface)	 function  is  sufficiently  dereferenced.  Buffers  should be
       passed as a single pointer or array. As MPI function signatures specify
       void * for their	buffer types, insufficiently dereferenced buffers  can
       be  passed, like	for example as double pointers or multidimensional ar-
       rays, without a compiler	warning	emitted.

       Examples:

	  // A double pointer is passed	to the MPI function.
	  char *buf;
	  MPI_Send(&buf, 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

	  // A multidimensional	array is passed	to the MPI function.
	  short	buf[1][1];
	  MPI_Send(buf,	1, MPI_SHORT, 0, 0, MPI_COMM_WORLD);

	  // A pointer to an array is passed to	the MPI	function.
	  short	*buf[1];
	  MPI_Send(buf,	1, MPI_SHORT, 0, 0, MPI_COMM_WORLD);

   mpi-type-mismatch
       This check verifies if buffer type and MPI (Message Passing  Interface)
       datatype	 pairs match for used MPI functions. All MPI datatypes defined
       by the MPI standard (3.1) are verified  by  this	 check.	 User  defined
       typedefs,  custom MPI datatypes and null	pointer	constants are skipped,
       in the course of	verification.

       Example:

	  // In	this case, the buffer type matches MPI datatype.
	  char buf;
	  MPI_Send(&buf, 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

	  // In	the following case, the	buffer type does not match MPI datatype.
	  int buf;
	  MPI_Send(&buf, 1, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

   objc-avoid-nserror-init
       Finds improper initialization of	NSError	objects.

       According to Apple developer document, we  should  always  use  factory
       method errorWithDomain:code:userInfo: to	create new NSError objects in-
       stead  of  [NSError  alloc]  init]. Otherwise it	will lead to a warning
       message during runtime.

       The    corresponding    information     about	 NSError     creation:
       https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ErrorHandlingCocoa/CreateCustomizeNSError/CreateCustomizeNSError.html

   objc-dealloc-in-category
       Finds  implementations of -dealloc in Objective-C categories. The cate-
       gory implementation will	override any -dealloc in the class implementa-
       tion, potentially causing issues.

       Classes implement -dealloc to perform important actions	to  deallocate
       an  object.  If	a  category  on	the class implements -dealloc, it will
       override	the class's implementation and unexpected deallocation	behav-
       ior may occur.

   objc-forbidden-subclassing
       Finds Objective-C classes which are subclasses of classes which are not
       designed	to be subclassed.

       By  default,  includes a	list of	Objective-C classes which are publicly
       documented as not supporting subclassing.

       NOTE:
	  Instead of using this	check, for code	under your control, you	should
	  add __attribute__((objc_subclassing_restricted)) before your @inter-
	  face declarations to ensure the compiler prevents others  from  sub-
	  classing	   your	       Objective-C	  classes.	   See
	  https://clang.llvm.org/docs/AttributeReference.html#objc-subclassing-restricted

   Options
       ForbiddenSuperClassNames
	      Semicolon-separated list of names	of Objective-C	classes	 which
	      do not support subclassing.

	      Defaults	to ABNewPersonViewController;ABPeoplePickerNavigation-
	      Controller;ABPersonViewController;ABUnknownPersonViewCon-
	      troller;NSHashTable;NSMapTable;NSPointerArray;NSPointerFunc-
	      tions;NSTimer;UIActionSheet;UIAlertView;UIImagePickerCon-
	      troller;UITextInputMode;UIWebView.

   objc-missing-hash
       Finds Objective-C implementations that implement	-isEqual: without also
       appropriately implementing -hash.

       Apple documentation highlights that objects that	are  equal  must  have
       the		    same		  hash			value:
       https://developer.apple.com/documentation/objectivec/1418956-nsobject/1418795-isequal?language=objc

       Note that the check only	verifies the presence of  -hash	 in  scenarios
       where  its  omission could result in unexpected behavior. The verifica-
       tion of the implementation of -hash is the responsibility of the	devel-
       oper, e.g., through the addition	of unit	tests to verify	the  implemen-
       tation.

   objc-nsinvocation-argument-lifetime
       Finds  calls  to	 NSInvocation methods under ARC	that don't have	proper
       argument	object lifetimes. When passing Objective-C objects as  parame-
       ters  to	 the  NSInvocation methods getArgument:atIndex:	and getReturn-
       Value:, the values are copied by	value into the argument	pointer, which
       leads to	to incorrect releasing behavior	if the object pointers are not
       declared	__unsafe_unretained.

       For code:

	  id arg;
	  [invocation getArgument:&arg atIndex:2];

	  __strong id returnValue;
	  [invocation getReturnValue:&returnValue];

       The fix will be:

	  __unsafe_unretained id arg;
	  [invocation getArgument:&arg atIndex:2];

	  __unsafe_unretained id returnValue;
	  [invocation getReturnValue:&returnValue];

       The check will warn on being passed instance variable  references  that
       have  lifetimes	other than __unsafe_unretained,	but does not propose a
       fix:

	  // "id _returnValue" is declaration of instance variable of class.
	  [invocation getReturnValue:&self->_returnValue];

   objc-property-declaration
       Finds property declarations in Objective-C files	that do	not follow the
       pattern of property names in Apple's programming	 guide.	 The  property
       name should be in the format of Lower Camel Case.

       For code:

	  @property(nonatomic, assign) int LowerCamelCase;

       The fix will be:

	  @property(nonatomic, assign) int lowerCamelCase;

       The check will only fix 'CamelCase' to 'camelCase'. In some other cases
       we  will	only provide warning messages since the	property name could be
       complicated.  Users will	need to	come up	with a proper  name  by	 their
       own.

       This  check also	accepts	special	acronyms as prefixes or	suffixes. Such
       prefixes	or suffixes will suppress the Lower Camel Case check according
       to			       the				guide:
       https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingBasics.html#//apple_ref/doc/uid/20001281-1002931-BBCFHEAB

       For	 a	 full	   list	     of	     well-known	     acronyms:
       https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/APIAbbreviations.html#//apple_ref/doc/uid/20001285-BCIHCGAE

       The		 corresponding		     style		 rule:
       https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CodingGuidelines/Articles/NamingIvarsAndTypes.html#//apple_ref/doc/uid/20001284-1001757

       The  check will also accept property declared in	category with a	prefix
       of lowercase letters followed by	a '_' to avoid	naming	conflict.  For
       example:

	  @property(nonatomic, assign) int abc_lowerCamelCase;

       The		 corresponding		     style		 rule:
       https://developer.apple.com/library/content/qa/qa1908/_index.html

   objc-super-self
       Finds invocations of -self on super instances in	initializers  of  sub-
       classes of NSObject and recommends calling a superclass initializer in-
       stead.

       Invoking	 -self on super	instances in initializers is a common program-
       mer error when the programmer's original	intent is to call a superclass
       initializer. Failing to call a superclass initializer  breaks  initial-
       izer chaining and can result in invalid object initialization.

   openmp-exception-escape
       Analyzes	 OpenMP	Structured Blocks and checks that no exception escapes
       out of the Structured Block it was thrown in.

       As per the OpenMP specification,	a structured block  is	an  executable
       statement, possibly compound, with a single entry at the	top and	a sin-
       gle exit	at the bottom. Which means, throw may not be used to to	'exit'
       out  of the structured block. If	an exception is	not caught in the same
       structured block	it was thrown in, the behaviour	is undefined.

       FIXME: this check does not model	SEH, setjmp/longjmp.

       WARNING!	This check may be expensive on large source files.

   Options
       IgnoredExceptions
	      Comma-separated list containing type names which are not counted
	      as thrown	exceptions in the check. Default  value	 is  an	 empty
	      string.

   openmp-use-default-none
       Finds  OpenMP  directives that are allowed to contain a default clause,
       but either don't	specify	it or the clause is  specified	but  with  the
       kind other than none, and suggests to use the default(none) clause.

       Using default(none) clause forces developers to explicitly specify data
       sharing	attributes for the variables referenced	in the construct, thus
       making it obvious which variables are referenced,  and  what  is	 their
       data sharing attribute, thus increasing readability and possibly	making
       errors easier to	spot.

   Example
	  // ``for`` directive can not have ``default``	clause,	no diagnostics.
	  void n0(const	int a) {
	  #pragma omp for
	    for	(int b = 0; b <	a; b++)
	      ;
	  }

	  // ``parallel`` directive.

	  // ``parallel`` directive can	have ``default`` clause, but said clause is not
	  // specified,	diagnosed.
	  void p0_0() {
	  #pragma omp parallel
	    ;
	    // WARNING:	OpenMP directive ``parallel`` does not specify ``default``
	    //		clause.	Consider specifying ``default(none)`` clause.
	  }

	  // ``parallel`` directive can	have ``default`` clause, and said clause is
	  // specified,	with ``none`` kind, all	good.
	  void p0_1() {
	  #pragma omp parallel default(none)
	    ;
	  }

	  // ``parallel`` directive can	have ``default`` clause, and said clause is
	  // specified,	but with ``shared`` kind, which	is not ``none``, diagnose.
	  void p0_2() {
	  #pragma omp parallel default(shared)
	    ;
	    // WARNING:	OpenMP directive ``parallel`` specifies	``default(shared)``
	    //		clause.	Consider using ``default(none)`` clause	instead.
	  }

	  // ``parallel`` directive can	have ``default`` clause, and said clause is
	  // specified,	but with ``firstprivate`` kind,	which is not ``none``, diagnose.
	  void p0_3() {
	  #pragma omp parallel default(firstprivate)
	    ;
	    // WARNING:	OpenMP directive ``parallel`` specifies	``default(firstprivate)``
	    //		clause.	Consider using ``default(none)`` clause	instead.
	  }

   performance-faster-string-find
       Optimize	 calls	to  std::string::find()	 and  friends  when the	needle
       passed is a single character  string  literal.  The  character  literal
       overload	is more	efficient.

       Examples:

	  str.find("A");

	  // becomes

	  str.find('A');

   Options
       StringLikeClasses
	      Semicolon-separated list of names	of string-like classes.	By de-
	      fault  only ::std::basic_string and ::std::basic_string_view are
	      considered.  The check will only consider	member functions named
	      find, rfind, find_first_of, find_first_not_of, find_last_of,  or
	      find_last_not_of within these classes.

   performance-for-range-copy
       Finds C++11 for ranges where the	loop variable is copied	in each	itera-
       tion but	it would suffice to obtain it by const reference.

       The check is only applied to loop variables of types that are expensive
       to copy which means they	are not	trivially copyable or have a non-triv-
       ial copy	constructor or destructor.

       To  ensure  that	 it is safe to replace the copy	with a const reference
       the following heuristic is employed:

       1. The loop variable is const qualified.

       2. The loop variable is not const, but only const methods or  operators
	  are  invoked	on it, or it is	used as	const reference	or value argu-
	  ment in constructors or function calls.

   Options
       WarnOnAllAutoCopies
	      When non-zero, warns on any use of  auto	as  the	 type  of  the
	      range-based for loop variable. Default is	0.

       AllowedTypes
	      A	 semicolon-separated  list  of	names  of  types allowed to be
	      copied in	each iteration.	Regular	expressions are	accepted, e.g.
	      [Rr]ef(erence)?$ matches every type with suffix Ref, ref,	Refer-
	      ence and reference. The default is empty.

   performance-implicit-cast-in-loop
       This check has been renamed to performance-implicit-conversion-in-loop.

   performance-implicit-conversion-in-loop
       This warning appears in a range-based loop  with	 a  loop  variable  of
       const  ref  type	 where the type	of the variable	does not match the one
       returned	by the iterator. This means that an implicit  conversion  hap-
       pens, which can for example result in expensive deep copies.

       Example:

	  map<int, vector<string>> my_map;
	  for (const pair<int, vector<string>>&	p : my_map) {}
	  // The iterator type is in fact pair<const int, vector<string>>, which means
	  // that the compiler added a conversion, resulting in	a copy of the vectors.

       The  easiest  solution is usually to use	const auto& instead of writing
       the type	manually.

   performance-inefficient-algorithm
       Warns on	inefficient use	of STL algorithms on associative containers.

       Associative containers implements some of  the  algorithms  as  methods
       which  should  be  preferred to the algorithms in the algorithm header.
       The methods can take advantage of the order of the elements.

	  std::set<int>	s;
	  auto it = std::find(s.begin(), s.end(), 43);

	  // becomes

	  auto it = s.find(43);

	  std::set<int>	s;
	  auto c = std::count(s.begin(), s.end(), 43);

	  // becomes

	  auto c = s.count(43);

   performance-inefficient-string-concatenation
       This check warns	about the performance overhead arising	from  concate-
       nating strings using the	operator+, for instance:

	  std::string a("Foo"),	b("Bar");
	  a = a	+ b;

       Instead	of  this  structure you	should use operator+= or std::string's
       (std::basic_string) class member	function append(). For instance:

	  std::string a("Foo"),	b("Baz");
	  for (int i = 0; i < 20000; ++i) {
	      a	= a + "Bar" + b;
	  }

       Could be	rewritten in a greatly more efficient way like:

	  std::string a("Foo"),	b("Baz");
	  for (int i = 0; i < 20000; ++i) {
	      a.append("Bar").append(b);
	  }

       And this	can be rewritten too:

	  void f(const std::string&) {}
	  std::string a("Foo"),	b("Baz");
	  void g() {
	      f(a + "Bar" + b);
	  }

       In a slightly more efficient way	like:

	  void f(const std::string&) {}
	  std::string a("Foo"),	b("Baz");
	  void g() {
	      f(std::string(a).append("Bar").append(b));
	  }

   Options
       StrictMode
	      When zero, the check will	only check the string usage in	while,
	      for and for-range	statements. Default is 0.

   performance-inefficient-vector-operation
       Finds  possible inefficient std::vector operations (e.g.	push_back, em-
       place_back) that	may cause unnecessary memory reallocations.

       It can also find	calls that add element to protobuf repeated field in a
       loop without calling Reserve() before the loop. Calling Reserve() first
       can avoid unnecessary memory reallocations.

       Currently, the check only detects following kinds of loops with a  sin-
       gle statement body:

        Counter-based for loops start with 0:

	  std::vector<int> v;
	  for (int i = 0; i < n; ++i) {
	    v.push_back(n);
	    // This will trigger the warning since the push_back may cause multiple
	    // memory reallocations in v. This can be avoid by inserting a 'reserve(n)'
	    // statement before	the for	statement.
	  }

	  SomeProto p;
	  for (int i = 0; i < n; ++i) {
	    p.add_xxx(n);
	    // This will trigger the warning since the add_xxx may cause multiple memory
	    // reallocations. This can be avoid	by inserting a
	    // 'p.mutable_xxx().Reserve(n)' statement before the for statement.
	  }

        For-range  loops like for (range-declaration :	range_expression), the
	 type of range_expression can be std::vector, std::array,  std::deque,
	 std::set, std::unordered_set, std::map, std::unordered_set:

	  std::vector<int> data;
	  std::vector<int> v;

	  for (auto element : data) {
	    v.push_back(element);
	    // This will trigger the warning since the 'push_back' may cause multiple
	    // memory reallocations in v. This can be avoid by inserting a
	    // 'reserve(data.size())' statement	before the for statement.
	  }

   Options
       VectorLikeClasses
	      Semicolon-separated list of names	of vector-like classes.	By de-
	      fault only ::std::vector is considered.

       EnableProto
	      When  non-zero,  the  check will also warn on inefficient	opera-
	      tions for	proto repeated fields. Otherwise, the check only warns
	      on inefficient vector operations.	Default	is 0.

   performance-move-const-arg
       The check warns

        if std::move()	is called with a constant argument,

        if std::move()	is called with an  argument  of	 a  trivially-copyable
	 type,

        if the	result of std::move() is passed	as a const reference argument.

       In  all	three  cases,  the  check  will	suggest	a fix that removes the
       std::move().

       Here are	examples of each of the	three cases:

	  const	string s;
	  return std::move(s);	// Warning: std::move of the const variable has	no effect

	  int x;
	  return std::move(x);	// Warning: std::move of the variable of a trivially-copyable type has no effect

	  void f(const string &s);
	  string s;
	  f(std::move(s));  // Warning:	passing	result of std::move as a const reference argument; no move will	actually happen

   Options
       CheckTriviallyCopyableMove
	      If non-zero, enables detection of	trivially copyable types  that
	      do not have a move constructor. Default is non-zero.

   performance-move-constructor-init
       "cert-oop11-cpp"	redirects here as an alias for this check.

       The  check  flags  user-defined move constructors that have a ctor-ini-
       tializer	initializing a member or base class through a copy constructor
       instead of a move constructor.

   Options
       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

   performance-no-automatic-move
       Finds local variables that cannot be automatically moved	due to	const-
       ness.

       Under certain conditions, local values are automatically	moved out when
       returning  from a function. A common mistake is to declare local	lvalue
       variables const,	which prevents the move.

       Example [1]:

	  StatusOr<std::vector<int>> Cool() {
	    std::vector<int> obj = ...;
	    return obj;	 // calls StatusOr::StatusOr(std::vector<int>&&)
	  }

	  StatusOr<std::vector<int>> NotCool() {
	    const std::vector<int> obj = ...;
	    return obj;	 // calls `StatusOr::StatusOr(const std::vector<int>&)`
	  }

       The former version (Cool) should	be preferred over the latter  (Uncool)
       as it will avoid	allocations and	potentially large memory copies.

   Semantics
       In  the	example	above, StatusOr::StatusOr(T&&) have the	same semantics
       as long as the copy and move constructors for T have  the  same	seman-
       tics. Note that there is	no guarantee that S::S(T&&) and	S::S(const T&)
       have  the same semantics	for any	single S, so we're not providing auto-
       mated fixes for this check, and judgement should	be exerted when	making
       the suggested changes.

   -Wreturn-std-move
       Another case where the move cannot happen is the	following:

	  StatusOr<std::vector<int>> Uncool() {
	    std::vector<int>&& obj = ...;
	    return obj;	 // calls `StatusOr::StatusOr(const std::vector<int>&)`
	  }

       In that case the	fix is more consensual:	 just  return  std::move(obj).
       This is handled by the -Wreturn-std-move	warning.

   performance-noexcept-move-constructor
       The check flags user-defined move constructors and assignment operators
       not marked with noexcept	or marked with noexcept(expr) where expr eval-
       uates to	false (but is not a false literal itself).

       Move  constructors of all the types used	with STL containers, for exam-
       ple, need to be declared	noexcept. Otherwise STL	will choose copy  con-
       structors instead. The same is valid for	move assignment	operations.

   performance-trivially-destructible
       Finds  types  that  could  be  made  trivially-destructible by removing
       out-of-line defaulted destructor	declarations.

	  struct A: TrivialType	{
	    ~A(); // Makes A non-trivially-destructible.
	    TrivialType	trivial_fields;
	  };
	  A::~A() = default;

   performance-type-promotion-in-math-fn
       Finds calls to C	math library functions (from math.h or,	in C++,	cmath)
       with implicit float to double promotions.

       For example, warns on ::sin(0.f), because this funciton's parameter  is
       a  double.  You	probably  meant	 to  call  std::sin(0.f)  (in C++), or
       sinf(0.f) (in C).

	  float	a;
	  asin(a);

	  // becomes

	  float	a;
	  std::asin(a);

   performance-unnecessary-copy-initialization
       Finds local variable declarations that are initialized using  the  copy
       constructor  of	a  non-trivially-copyable type but it would suffice to
       obtain a	const reference.

       The check is only applied if it is safe to replace the copy by a	 const
       reference.  This	 is  the  case when the	variable is const qualified or
       when it is only used as a const,	i.e. only const	methods	 or  operators
       are  invoked  on	it, or it is used as const reference or	value argument
       in constructors or function calls.

       Example:

	  const	string&	constReference();
	  void Function() {
	    // The warning will	suggest	making this a const reference.
	    const string UnnecessaryCopy = constReference();
	  }

	  struct Foo {
	    const string& name() const;
	  };
	  void Function(const Foo& foo)	{
	    // The warning will	suggest	making this a const reference.
	    string UnnecessaryCopy1 = foo.name();
	    UnnecessaryCopy1.find("bar");

	    // The warning will	suggest	making this a const reference.
	    string UnnecessaryCopy2 = UnnecessaryCopy1;
	    UnnecessaryCopy2.find("bar");
	  }

   Options
       AllowedTypes
	      A	semicolon-separated list of names of types allowed to be  ini-
	      tialized	by  copying.  Regular  expressions  are	accepted, e.g.
	      [Rr]ef(erence)?$ matches every type with suffix Ref, ref,	Refer-
	      ence and reference. The default is empty.

   performance-unnecessary-value-param
       Flags value parameter declarations of expensive to copy types that  are
       copied  for  each invocation but	it would suffice to pass them by const
       reference.

       The check is only applied to parameters of types	that are expensive  to
       copy  which means they are not trivially	copyable or have a non-trivial
       copy constructor	or destructor.

       To ensure that it is safe to replace the	value parameter	with  a	 const
       reference the following heuristic is employed:

       1. the parameter	is const qualified;

       2. the  parameter is not	const, but only	const methods or operators are
	  invoked on it, or it is used as const	reference or value argument in
	  constructors or function calls.

       Example:

	  void f(const string Value) {
	    // The warning will	suggest	making Value a reference.
	  }

	  void g(ExpensiveToCopy Value)	{
	    // The warning will	suggest	making Value a const reference.
	    Value.ConstMethd();
	    ExpensiveToCopy Copy(Value);
	  }

       If the parameter	is not const, only copied or assigned once and	has  a
       non-trivial  move-constructor  or move-assignment operator respectively
       the check will suggest to move it.

       Example:

	  void setValue(string Value) {
	    Field = Value;
	  }

       Will become:

	  #include <utility>

	  void setValue(string Value) {
	    Field = std::move(Value);
	  }

   Options
       IncludeStyle
	      A	string specifying which	include-style is used, llvm or google.
	      Default is llvm.

       AllowedTypes
	      A	semicolon-separated list of  names  of	types  allowed	to  be
	      passed   by  value.   Regular  expressions  are  accepted,  e.g.
	      [Rr]ef(erence)?$ matches every type with suffix Ref, ref,	Refer-
	      ence and reference. The default is empty.

   portability-restrict-system-includes
       Checks to selectively allow or disallow a configurable list  of	system
       headers.

       For example:

       In order	to only	allow zlib.h from the system you would set the options
       to -*,zlib.h.

	  #include <curses.h>	    // Bad: disallowed system header.
	  #include <openssl/ssl.h>  // Bad: disallowed system header.
	  #include <zlib.h>	    // Good: allowed system header.
	  #include "src/myfile.h"   // Good: non-system	header always allowed.

       In  order  to  allow everything except zlib.h from the system you would
       set the options to *,-zlib.h.

	  #include <curses.h>	    // Good: allowed system header.
	  #include <openssl/ssl.h>  // Good: allowed system header.
	  #include <zlib.h>	    // Bad: disallowed system header.
	  #include "src/myfile.h"   // Good: non-system	header always allowed.

       Since the options support globbing you can  use	wildcarding  to	 allow
       groups of headers.

       -*,openssl/*.h will allow all openssl headers but disallow any others.

	  #include <curses.h>	    // Bad: disallowed system header.
	  #include <openssl/ssl.h>  // Good: allowed system header.
	  #include <openssl/rsa.h>  // Good: allowed system header.
	  #include <zlib.h>	    // Bad: disallowed system header.
	  #include "src/myfile.h"   // Good: non-system	header always allowed.

   Options
       Includes
	      A	 string	 containing a comma separated glob list	of allowed in-
	      clude filenames. Similar to the -checks glob  list  for  running
	      clang-tidy  itself,  the two wildcard characters are * and -, to
	      include and exclude globs, respectively. The default is *, which
	      allows all includes.

   portability-simd-intrinsics
       Finds SIMD intrinsics calls  and	 suggests  std::experimental::simd  (-
       P0214) alternatives.

       If the option Suggest is	set to non-zero, for

	  _mm_add_epi32(a, b); // x86
	  vec_add(a, b);       // Power

       the check suggests an alternative: operator+ on std::experimental::simd
       objects.

       Otherwise, it just complains the	intrinsics are non-portable (and there
       are P0214 alternatives).

       Many architectures provide SIMD operations (e.g.	x86 SSE/AVX, Power Al-
       tiVec/VSX, ARM NEON). It	is common that SIMD code implementing the same
       algorithm, is written in	multiple target-dispatching pieces to optimize
       for different architectures or micro-architectures.

       The  C++	 standard  proposal P0214 and its extensions cover many	common
       SIMD operations.	By migrating from target-dependent intrinsics to P0214
       operations, the SIMD code can be	simplified and	pieces	for  different
       targets can be unified.

       Refer  to  P0214	 for introduction and motivation for the data-parallel
       standard	library.

   Options
       Suggest
	      If this option is	set to non-zero	(default is 0),	the check will
	      suggest P0214 alternatives, otherwise it only points out the in-
	      trinsic function is non-portable.

       Std    The namespace used to suggest P0214 alternatives.	If not	speci-
	      fied,   std::   for   -std=c++20	 and  std::experimental::  for
	      -std=c++11.

   readability-avoid-const-params-in-decls
       Checks whether a	function declaration has parameters that are top level
       const.

       const values in declarations do not affect the signature	of a function,
       so they should not be put there.

       Examples:

	  void f(const string);	  // Bad: const	is top level.
	  void f(const string&);  // Good: const is not	top level.

   readability-braces-around-statements
       google-readability-braces-around-statements redirects here as an	 alias
       for this	check.

       Checks  that  bodies  of	 if  statements	 and loops (for, do while, and
       while) are inside braces.

       Before:

	  if (condition)
	    statement;

       After:

	  if (condition) {
	    statement;
	  }

   Options
       ShortStatementLines
	      Defines the minimal number of lines that	the  statement	should
	      have in order to trigger this check.

	      The number of lines is counted from the end of condition or ini-
	      tial  keyword  (do/else) until the last line of the inner	state-
	      ment. Default value 0 means that braces will  be	added  to  all
	      statements (not having them already).

   readability-const-return-type
       Checks  for functions with a const-qualified return type	and recommends
       removal of the const keyword. Such use of const is usually superfluous,
       and can prevent valuable	compiler optimizations.	 Does  not  (yet)  fix
       trailing	return types.

       Examples:

	  const	int foo();
	  const	Clazz foo();
	  Clazz	*const foo();

       Note  that  this	applies	strictly to top-level qualification, which ex-
       cludes pointers or references to	const values. For example,  these  are
       fine:

	  const	int* foo();
	  const	int& foo();
	  const	Clazz* foo();

   readability-container-size-empty
       Checks  whether a call to the size() method can be replaced with	a call
       to empty().

       The emptiness of	a container should be checked using the	empty()	method
       instead of the size() method. It	is not guaranteed  that	 size()	 is  a
       constant-time  function,	 and  it  is generally more efficient and also
       shows clearer intent to use empty(). Furthermore	 some  containers  may
       implement the empty() method but	not implement the size() method. Using
       empty()	whenever  possible  makes  it easier to	switch to another con-
       tainer in the future.

       The check issues	warning	if a container has size() and empty()  methods
       matching	following signatures:

	  size_type size() const;
	  bool empty() const;

       size_type can be	any kind of integer type.

   readability-convert-member-functions-to-static
       Finds  non-static  member functions that	can be made static because the
       functions don't use this.

       After applying modifications as suggested by  the  check,  running  the
       check again might find more opportunities to mark member	functions sta-
       tic.

       After  making a member function static, you might want to run the check
       readability-static-accessed-through-instance to replace calls like  In-
       stance.method() by Class::method().

   readability-delete-null-pointer
       Checks  the  if	statements  where a pointer's existence	is checked and
       then deletes the	pointer.  The check is unnecessary as deleting a  null
       pointer has no effect.

	  int *p;
	  if (p)
	    delete p;

   readability-deleted-default
       Checks  that  constructors and assignment operators marked as = default
       are not actually	deleted	by the compiler.

	  class	Example	{
	  public:
	    // This constructor	is deleted because I is	missing	a default value.
	    Example() =	default;
	    // This is fine.
	    Example(const Example& Other) = default;
	    // This operator is	deleted	because	I cannot be assigned (it is const).
	    Example& operator=(const Example& Other) = default;

	  private:
	    const int I;
	  };

   readability-else-after-return
       LLVM Coding Standards advises to	reduce indentation where possible  and
       where  it  makes	 understanding	code easier.  Early exit is one	of the
       suggested enforcements of that. Please do not use else or else if after
       something that interrupts control flow -	like return, break,  continue,
       throw.

       The following piece of code illustrates how the check works. This piece
       of code:

	  void foo(int Value) {
	    int	Local =	0;
	    for	(int i = 0; i <	42; i++) {
	      if (Value	== 1) {
		return;
	      }	else {
		Local++;
	      }

	      if (Value	== 2)
		continue;
	      else
		Local++;

	      if (Value	== 3) {
		throw 42;
	      }	else {
		Local++;
	      }
	    }
	  }

       Would be	transformed into:

	  void foo(int Value) {
	    int	Local =	0;
	    for	(int i = 0; i <	42; i++) {
	      if (Value	== 1) {
		return;
	      }
	      Local++;

	      if (Value	== 2)
		continue;
	      Local++;

	      if (Value	== 3) {
		throw 42;
	      }
	      Local++;
	    }
	  }

   Options
       WarnOnUnfixable
	      When true, emit a	warning	for cases where	the check can't	output
	      a	 Fix-It.  These	 can  occur  with declarations inside the else
	      branch that would	have an	extended lifetime if the  else	branch
	      was removed.  Default value is true.

       WarnOnConditionVariables
	      When true, the check will	attempt	to refactor a variable defined
	      inside  the  condition  of  the if statement that	is used	in the
	      else branch defining them	just before the	if statement. This can
	      only be done if the if statement is the last  statement  in  its
	      parents scope.  Default value is true.

   LLVM	alias
       There is	an alias of this check called llvm-else-after-return.  In that
       version	the  options  WarnOnUnfixable and WarnOnConditionVariables are
       both set	to false by default.

       This check helps	to enforce this	LLVM Coding Standards recommendation.

   readability-function-size
       google-readability-function-size	redirects here as an  alias  for  this
       check.

       Checks for large	functions based	on various metrics.

   Options
       LineThreshold
	      Flag functions exceeding this number of lines. The default is -1
	      (ignore the number of lines).

       StatementThreshold
	      Flag  functions  exceeding  this	number of statements. This may
	      differ significantly from	the number of  lines  for  macro-heavy
	      code. The	default	is 800.

       BranchThreshold
	      Flag  functions exceeding	this number of control statements. The
	      default is -1 (ignore the	number of branches).

       ParameterThreshold
	      Flag functions that exceed a specified number of parameters. The
	      default is -1 (ignore the	number of parameters).

       NestingThreshold
	      Flag compound statements which create next nesting  level	 after
	      NestingThreshold.	 This  may  differ  significantly from the ex-
	      pected value for macro-heavy code. The default is	-1 (ignore the
	      nesting level).

       VariableThreshold
	      Flag functions exceeding this number of  variables  declared  in
	      the  body.   The default is -1 (ignore the number	of variables).
	      Please note that function	parameters and variables  declared  in
	      lambdas,	GNU  Statement	Expressions,  and  nested class	inline
	      functions	are not	counted.

   readability-identifier-naming
       Checks for identifiers naming style mismatch.

       This check will try to enforce coding  guidelines  on  the  identifiers
       naming. It supports one of the following	casing types and tries to con-
       vert from one to	another	if a mismatch is detected

       Casing types include:

	   lower_case,

	   UPPER_CASE,

	   camelBack,

	   CamelCase,

	   camel_Snake_Back,

	   Camel_Snake_Case,

	   aNy_CasE.

       It  also	 supports  a fixed prefix and suffix that will be prepended or
       appended	to the identifiers, regardless of the casing.

       Many configuration options are available, in order to be	able to	create
       different rules for different kinds of  identifiers.  In	 general,  the
       rules  are  falling back	to a more generic rule if the specific case is
       not configured.

       The naming of virtual methods is	reported where they occur in the  base
       class,  but not where they are overridden, as it	can't be fixed locally
       there.  This also applies for pseudo-override patterns like CRTP.

   Options
       The following options are describe below:

	   AbstractClassCase, AbstractClassPrefix, AbstractClassSuffix

	   AggressiveDependentMemberLookup

	   ClassCase, ClassPrefix, ClassSuffix

	   ClassConstantCase, ClassConstantPrefix, ClassConstantSuffix

	   ClassMemberCase, ClassMemberPrefix,	ClassMemberSuffix

	   ClassMethodCase, ClassMethodPrefix,	ClassMethodSuffix

	   ConstantCase, ConstantPrefix, ConstantSuffix

	   ConstantMemberCase,	ConstantMemberPrefix, ConstantMemberSuffix

	   ConstantParameterCase,		      ConstantParameterPrefix,
	    ConstantParameterSuffix

	   ConstantPointerParameterCase,      ConstantPointerParameterPrefix,
	    ConstantPointerParameterSuffix

	   ConstexprFunctionCase,		      ConstexprFunctionPrefix,
	    ConstexprFunctionSuffix

	   ConstexprMethodCase, ConstexprMethodPrefix,	ConstexprMethodSuffix

	   ConstexprVariableCase,		      ConstexprVariablePrefix,
	    ConstexprVariableSuffix

	   EnumCase, EnumPrefix, EnumSuffix

	   EnumConstantCase, EnumConstantPrefix, EnumConstantSuffix

	   FunctionCase, FunctionPrefix, FunctionSuffix

	   GlobalConstantCase,	GlobalConstantPrefix, GlobalConstantSuffix

	   GlobalConstantPointerCase,		  GlobalConstantPointerPrefix,
	    GlobalConstantPointerSuffix

	   GlobalFunctionCase,	GlobalFunctionPrefix, GlobalFunctionSuffix

	   GlobalPointerCase, GlobalPointerPrefix, GlobalPointerSuffix

	   GlobalVariableCase,	GlobalVariablePrefix, GlobalVariableSuffix

	   IgnoreMainLikeFunctions

	   InlineNamespaceCase, InlineNamespacePrefix,	InlineNamespaceSuffix

	   LocalConstantCase, LocalConstantPrefix, LocalConstantSuffix

	   LocalConstantPointerCase,		   LocalConstantPointerPrefix,
	    LocalConstantPointerSuffix

	   LocalPointerCase, LocalPointerPrefix, LocalPointerSuffix

	   LocalVariableCase, LocalVariablePrefix, LocalVariableSuffix

	   MacroDefinitionCase, MacroDefinitionPrefix,	MacroDefinitionSuffix

	   MemberCase,	MemberPrefix, MemberSuffix

	   MethodCase,	MethodPrefix, MethodSuffix

	   NamespaceCase, NamespacePrefix, NamespaceSuffix

	   ParameterCase, ParameterPrefix, ParameterSuffix

	   ParameterPackCase, ParameterPackPrefix, ParameterPackSuffix

	   PointerParameterCase,		       PointerParameterPrefix,
	    PointerParameterSuffix

	   PrivateMemberCase, PrivateMemberPrefix, PrivateMemberSuffix

	   PrivateMethodCase, PrivateMethodPrefix, PrivateMethodSuffix

	   ProtectedMemberCase, ProtectedMemberPrefix,	ProtectedMemberSuffix

	   ProtectedMethodCase, ProtectedMethodPrefix,	ProtectedMethodSuffix

	   PublicMemberCase, PublicMemberPrefix, PublicMemberSuffix

	   PublicMethodCase, PublicMethodPrefix, PublicMethodSuffix

	   StaticConstantCase,	StaticConstantPrefix, StaticConstantSuffix

	   StaticVariableCase,	StaticVariablePrefix, StaticVariableSuffix

	   StructCase,	StructPrefix, StructSuffix

	   TemplateParameterCase,		      TemplateParameterPrefix,
	    TemplateParameterSuffix

	   TemplateTemplateParameterCase,    TemplateTemplateParameterPrefix,
	    TemplateTemplateParameterSuffix

	   TypeAliasCase, TypeAliasPrefix, TypeAliasSuffix

	   TypedefCase, TypedefPrefix,	TypedefSuffix

	   TypeTemplateParameterCase,		  TypeTemplateParameterPrefix,
	    TypeTemplateParameterSuffix

	   UnionCase, UnionPrefix, UnionSuffix

	   ValueTemplateParameterCase,		 ValueTemplateParameterPrefix,
	    ValueTemplateParameterSuffix

	   VariableCase, VariablePrefix, VariableSuffix

	   VirtualMethodCase, VirtualMethodPrefix, VirtualMethodSuffix

       AbstractClassCase
	      When defined, the	check will ensure abstract class names conform
	      to the selected casing.

       AbstractClassPrefix
	      When  defined,  the  check will ensure abstract class names will
	      add the prefixed with the	given value (regardless	of casing).

       AbstractClassSuffix
	      When defined, the	check will ensure abstract  class  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   AbstractClassCase of lower_case

	   AbstractClassPrefix	of pre_

	   AbstractClassSuffix	of _post

       Identifies and/or transforms abstract class names as follows:

       Before:

	  class	ABSTRACT_CLASS {
	  public:
	    ABSTRACT_CLASS();
	  };

       After:

	  class	pre_abstract_class_post	{
	  public:
	    pre_abstract_class_post();
	  };

       AggressiveDependentMemberLookup
	      When  set	to 1 the check will look in dependent base classes for
	      dependent	member references that need changing. This can lead to
	      errors with template specializations so the default value	is 0.

       For example using values	of:

	   ClassMemberCase of lower_case

       Before:

	  template <typename T>
	  struct Base {
	    T BadNamedMember;
	  };

	  template <typename T>
	  struct Derived : Base<T> {
	    void reset() {
	      this->BadNamedMember = 0;
	    }
	  };

       After if	AggressiveDependentMemberLookup	is 0:

	  template <typename T>
	  struct Base {
	    T bad_named_member;
	  };

	  template <typename T>
	  struct Derived : Base<T> {
	    void reset() {
	      this->BadNamedMember = 0;
	    }
	  };

       After if	AggressiveDependentMemberLookup	is 1:

	  template <typename T>
	  struct Base {
	    T bad_named_member;
	  };

	  template <typename T>
	  struct Derived : Base<T> {
	    void reset() {
	      this->bad_named_member = 0;
	    }
	  };

       ClassCase
	      When defined, the	check will ensure class	names conform  to  the
	      selected casing.

       ClassPrefix
	      When  defined,  the  check  will ensure class names will add the
	      prefixed with the	given value (regardless	of casing).

       ClassSuffix
	      When defined, the	check will ensure class	 names	will  add  the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   ClassCase of lower_case

	   ClassPrefix	of pre_

	   ClassSuffix	of _post

       Identifies and/or transforms class names	as follows:

       Before:

	  class	FOO {
	  public:
	    FOO();
	    ~FOO();
	  };

       After:

	  class	pre_foo_post {
	  public:
	    pre_foo_post();
	    ~pre_foo_post();
	  };

       ClassConstantCase
	      When defined, the	check will ensure class	constant names conform
	      to the selected casing.

       ClassConstantPrefix
	      When  defined,  the  check will ensure class constant names will
	      add the prefixed with the	given value (regardless	of casing).

       ClassConstantSuffix
	      When defined, the	check will ensure class	 constant  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ClassConstantCase of lower_case

	   ClassConstantPrefix	of pre_

	   ClassConstantSuffix	of _post

       Identifies and/or transforms class constant names as follows:

       Before:

	  class	FOO {
	  public:
	    static const int CLASS_CONSTANT;
	  };

       After:

	  class	FOO {
	  public:
	    static const int pre_class_constant_post;
	  };

       ClassMemberCase
	      When  defined,  the check	will ensure class member names conform
	      to the selected casing.

       ClassMemberPrefix
	      When defined, the	check will ensure class	member names will  add
	      the prefixed with	the given value	(regardless of casing).

       ClassMemberSuffix
	      When  defined, the check will ensure class member	names will add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   ClassMemberCase of lower_case

	   ClassMemberPrefix of pre_

	   ClassMemberSuffix of _post

       Identifies and/or transforms class member names as follows:

       Before:

	  class	FOO {
	  public:
	    static int CLASS_CONSTANT;
	  };

       After:

	  class	FOO {
	  public:
	    static int pre_class_constant_post;
	  };

       ClassMethodCase
	      When defined, the	check will ensure class	method	names  conform
	      to the selected casing.

       ClassMethodPrefix
	      When  defined, the check will ensure class method	names will add
	      the prefixed with	the given value	(regardless of casing).

       ClassMethodSuffix
	      When defined, the	check will ensure class	method names will  add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   ClassMethodCase of lower_case

	   ClassMethodPrefix of pre_

	   ClassMethodSuffix of _post

       Identifies and/or transforms class method names as follows:

       Before:

	  class	FOO {
	  public:
	    int	CLASS_MEMBER();
	  };

       After:

	  class	FOO {
	  public:
	    int	pre_class_member_post();
	  };

       ConstantCase
	      When  defined,  the  check will ensure constant names conform to
	      the selected casing.

       ConstantPrefix
	      When defined, the	check will ensure constant names will add  the
	      prefixed with the	given value (regardless	of casing).

       ConstantSuffix
	      When  defined, the check will ensure constant names will add the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   ConstantCase of lower_case

	   ConstantPrefix of pre_

	   ConstantSuffix of _post

       Identifies and/or transforms constant names as follows:

       Before:

	  void function() { unsigned const MyConst_array[] = {1, 2, 3};	}

       After:

	  void function() { unsigned const pre_myconst_array_post[] = {1, 2, 3}; }

       ConstantMemberCase
	      When defined, the	check will ensure constant member  names  con-
	      form to the selected casing.

       ConstantMemberPrefix
	      When  defined,  the check	will ensure constant member names will
	      add the prefixed with the	given value (regardless	of casing).

       ConstantMemberSuffix
	      When defined, the	check will ensure constant member  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ConstantMemberCase of lower_case

	   ConstantMemberPrefix of pre_

	   ConstantMemberSuffix of _post

       Identifies and/or transforms constant member names as follows:

       Before:

	  class	Foo {
	    char const MY_ConstMember_string[4]	= "123";
	  }

       After:

	  class	Foo {
	    char const pre_my_constmember_string_post[4] = "123";
	  }

       ConstantParameterCase
	      When  defined,  the  check  will ensure constant parameter names
	      conform to the selected casing.

       ConstantParameterPrefix
	      When defined, the	check will  ensure  constant  parameter	 names
	      will  add	 the prefixed with the given value (regardless of cas-
	      ing).

       ConstantParameterSuffix
	      When defined, the	check will  ensure  constant  parameter	 names
	      will add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ConstantParameterCase of lower_case

	   ConstantParameterPrefix of pre_

	   ConstantParameterSuffix of _post

       Identifies and/or transforms constant parameter names as	follows:

       Before:

	  void GLOBAL_FUNCTION(int PARAMETER_1,	int const CONST_parameter);

       After:

	  void GLOBAL_FUNCTION(int PARAMETER_1,	int const pre_const_parameter_post);

       ConstantPointerParameterCase
	      When  defined,  the check	will ensure constant pointer parameter
	      names conform to the selected casing.

       ConstantPointerParameterPrefix
	      When defined, the	check will ensure constant  pointer  parameter
	      names  will add the prefixed with	the given value	(regardless of
	      casing).

       ConstantPointerParameterSuffix
	      When defined, the	check will ensure constant  pointer  parameter
	      names  will  add	the suffix with	the given value	(regardless of
	      casing).

       For example using values	of:

	   ConstantPointerParameterCase of lower_case

	   ConstantPointerParameterPrefix of pre_

	   ConstantPointerParameterSuffix of _post

       Identifies and/or transforms constant pointer parameter names  as  fol-
       lows:

       Before:

	  void GLOBAL_FUNCTION(int const *CONST_parameter);

       After:

	  void GLOBAL_FUNCTION(int const *pre_const_parameter_post);

       ConstexprFunctionCase
	      When  defined,  the  check  will ensure constexpr	function names
	      conform to the selected casing.

       ConstexprFunctionPrefix
	      When defined, the	check will  ensure  constexpr  function	 names
	      will  add	 the prefixed with the given value (regardless of cas-
	      ing).

       ConstexprFunctionSuffix
	      When defined, the	check will  ensure  constexpr  function	 names
	      will add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ConstexprFunctionCase of lower_case

	   ConstexprFunctionPrefix of pre_

	   ConstexprFunctionSuffix of _post

       Identifies and/or transforms constexpr function names as	follows:

       Before:

	  constexpr int	CE_function() {	return 3; }

       After:

	  constexpr int	pre_ce_function_post() { return	3; }

       ConstexprMethodCase
	      When  defined, the check will ensure constexpr method names con-
	      form to the selected casing.

       ConstexprMethodPrefix
	      When defined, the	check will ensure constexpr method names  will
	      add the prefixed with the	given value (regardless	of casing).

       ConstexprMethodSuffix
	      When  defined, the check will ensure constexpr method names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ConstexprMethodCase	of lower_case

	   ConstexprMethodPrefix of pre_

	   ConstexprMethodSuffix of _post

       Identifies and/or transforms constexpr method names as follows:

       Before:

	  class	Foo {
	  public:
	    constexpr int CST_expr_Method() { return 2;	}
	  }

       After:

	  class	Foo {
	  public:
	    constexpr int pre_cst_expr_method_post() { return 2; }
	  }

       ConstexprVariableCase
	      When defined, the	check will  ensure  constexpr  variable	 names
	      conform to the selected casing.

       ConstexprVariablePrefix
	      When  defined,  the  check  will ensure constexpr	variable names
	      will add the prefixed with the given value (regardless  of  cas-
	      ing).

       ConstexprVariableSuffix
	      When  defined,  the  check  will ensure constexpr	variable names
	      will add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ConstexprVariableCase of lower_case

	   ConstexprVariablePrefix of pre_

	   ConstexprVariableSuffix of _post

       Identifies and/or transforms constexpr variable names as	follows:

       Before:

	  constexpr int	ConstExpr_variable = MyConstant;

       After:

	  constexpr int	pre_constexpr_variable_post = MyConstant;

       EnumCase
	      When defined, the	check will ensure enumeration names conform to
	      the selected casing.

       EnumPrefix
	      When defined, the	check will ensure enumeration names  will  add
	      the prefixed with	the given value	(regardless of casing).

       EnumSuffix
	      When  defined,  the check	will ensure enumeration	names will add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   EnumCase of	lower_case

	   EnumPrefix of pre_

	   EnumSuffix of _post

       Identifies and/or transforms enumeration	names as follows:

       Before:

	  enum FOO { One, Two, Three };

       After:

	  enum pre_foo_post { One, Two,	Three };

       EnumConstantCase
	      When defined, the	check will ensure enumeration  constant	 names
	      conform to the selected casing.

       EnumConstantPrefix
	      When  defined,  the check	will ensure enumeration	constant names
	      will add the prefixed with the given value (regardless  of  cas-
	      ing).

       EnumConstantSuffix
	      When  defined,  the check	will ensure enumeration	constant names
	      will add the suffix with the given value (regardless of casing).

       For example using values	of:

	   EnumConstantCase of	lower_case

	   EnumConstantPrefix of pre_

	   EnumConstantSuffix of _post

       Identifies and/or transforms enumeration	constant names as follows:

       Before:

	  enum FOO { One, Two, Three };

       After:

	  enum FOO { pre_One_post, pre_Two_post, pre_Three_post	};

       FunctionCase
	      When defined, the	check will ensure function  names  conform  to
	      the selected casing.

       FunctionPrefix
	      When  defined, the check will ensure function names will add the
	      prefixed with the	given value (regardless	of casing).

       FunctionSuffix
	      When defined, the	check will ensure function names will add  the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   FunctionCase of lower_case

	   FunctionPrefix of pre_

	   FunctionSuffix of _post

       Identifies and/or transforms function names as follows:

       Before:

	  char MY_Function_string();

       After:

	  char pre_my_function_string_post();

       GlobalConstantCase
	      When  defined,  the check	will ensure global constant names con-
	      form to the selected casing.

       GlobalConstantPrefix
	      When defined, the	check will ensure global constant  names  will
	      add the prefixed with the	given value (regardless	of casing).

       GlobalConstantSuffix
	      When  defined,  the check	will ensure global constant names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   GlobalConstantCase of lower_case

	   GlobalConstantPrefix of pre_

	   GlobalConstantSuffix of _post

       Identifies and/or transforms global constant names as follows:

       Before:

	  unsigned const MyConstGlobal_array[] = {1, 2,	3};

       After:

	  unsigned const pre_myconstglobal_array_post[]	= {1, 2, 3};

       GlobalConstantPointerCase
	      When defined, the	check  will  ensure  global  constant  pointer
	      names conform to the selected casing.

       GlobalConstantPointerPrefix
	      When  defined,  the  check  will	ensure global constant pointer
	      names will add the prefixed with the given value (regardless  of
	      casing).

       GlobalConstantPointerSuffix
	      When  defined,  the  check  will	ensure global constant pointer
	      names will add the suffix	with the given	value  (regardless  of
	      casing).

       For example using values	of:

	   GlobalConstantPointerCase of lower_case

	   GlobalConstantPointerPrefix	of pre_

	   GlobalConstantPointerSuffix	of _post

       Identifies and/or transforms global constant pointer names as follows:

       Before:

	  int *const MyConstantGlobalPointer = nullptr;

       After:

	  int *const pre_myconstantglobalpointer_post =	nullptr;

       GlobalFunctionCase
	      When  defined,  the check	will ensure global function names con-
	      form to the selected casing.

       GlobalFunctionPrefix
	      When defined, the	check will ensure global function  names  will
	      add the prefixed with the	given value (regardless	of casing).

       GlobalFunctionSuffix
	      When  defined,  the check	will ensure global function names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   GlobalFunctionCase of lower_case

	   GlobalFunctionPrefix of pre_

	   GlobalFunctionSuffix of _post

       Identifies and/or transforms global function names as follows:

       Before:

	  void GLOBAL_FUNCTION(int PARAMETER_1,	int const CONST_parameter);

       After:

	  void pre_global_function_post(int PARAMETER_1, int const CONST_parameter);

       GlobalPointerCase
	      When defined, the	check will ensure global pointer names conform
	      to the selected casing.

       GlobalPointerPrefix
	      When defined, the	check will ensure global  pointer  names  will
	      add the prefixed with the	given value (regardless	of casing).

       GlobalPointerSuffix
	      When  defined,  the  check will ensure global pointer names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   GlobalPointerCase of lower_case

	   GlobalPointerPrefix	of pre_

	   GlobalPointerSuffix	of _post

       Identifies and/or transforms global pointer names as follows:

       Before:

	  int *GLOBAL3;

       After:

	  int *pre_global3_post;

       GlobalVariableCase
	      When defined, the	check will ensure global variable  names  con-
	      form to the selected casing.

       GlobalVariablePrefix
	      When  defined,  the check	will ensure global variable names will
	      add the prefixed with the	given value (regardless	of casing).

       GlobalVariableSuffix
	      When defined, the	check will ensure global variable  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   GlobalVariableCase of lower_case

	   GlobalVariablePrefix of pre_

	   GlobalVariableSuffix of _post

       Identifies and/or transforms global variable names as follows:

       Before:

	  int GLOBAL3;

       After:

	  int pre_global3_post;

       IgnoreMainLikeFunctions
	      When set to 1 functions that have	a similar signature to main or
	      wmain  won't  enforce  checks  on	the names of their parameters.
	      Default value is 0.

       InlineNamespaceCase
	      When defined, the	check will ensure inline namespaces names con-
	      form to the selected casing.

       InlineNamespacePrefix
	      When defined, the	check will ensure inline namespaces names will
	      add the prefixed with the	given value (regardless	of casing).

       InlineNamespaceSuffix
	      When defined, the	check will ensure inline namespaces names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   InlineNamespaceCase	of lower_case

	   InlineNamespacePrefix of pre_

	   InlineNamespaceSuffix of _post

       Identifies and/or transforms inline namespaces names as follows:

       Before:

	  namespace FOO_NS {
	  inline namespace InlineNamespace {
	  ...
	  }
	  } // namespace FOO_NS

       After:

	  namespace FOO_NS {
	  inline namespace pre_inlinenamespace_post {
	  ...
	  }
	  } // namespace FOO_NS

       LocalConstantCase
	      When defined, the	check will ensure local	constant names conform
	      to the selected casing.

       LocalConstantPrefix
	      When defined, the	check will ensure local	 constant  names  will
	      add the prefixed with the	given value (regardless	of casing).

       LocalConstantSuffix
	      When  defined,  the  check will ensure local constant names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   LocalConstantCase of lower_case

	   LocalConstantPrefix	of pre_

	   LocalConstantSuffix	of _post

       Identifies and/or transforms local constant names as follows:

       Before:

	  void foo() { int const local_Constant	= 3; }

       After:

	  void foo() { int const pre_local_constant_post = 3; }

       LocalConstantPointerCase
	      When defined, the	check will ensure local	constant pointer names
	      conform to the selected casing.

       LocalConstantPointerPrefix
	      When defined, the	check will ensure local	constant pointer names
	      will add the prefixed with the given value (regardless  of  cas-
	      ing).

       LocalConstantPointerSuffix
	      When defined, the	check will ensure local	constant pointer names
	      will add the suffix with the given value (regardless of casing).

       For example using values	of:

	   LocalConstantPointerCase of	lower_case

	   LocalConstantPointerPrefix of pre_

	   LocalConstantPointerSuffix of _post

       Identifies and/or transforms local constant pointer names as follows:

       Before:

	  void foo() { int const *local_Constant = 3; }

       After:

	  void foo() { int const *pre_local_constant_post = 3; }

       LocalPointerCase
	      When  defined, the check will ensure local pointer names conform
	      to the selected casing.

       LocalPointerPrefix
	      When defined, the	check will ensure local	pointer	names will add
	      the prefixed with	the given value	(regardless of casing).

       LocalPointerSuffix
	      When defined, the	check will ensure local	pointer	names will add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   LocalPointerCase of	lower_case

	   LocalPointerPrefix of pre_

	   LocalPointerSuffix of _post

       Identifies and/or transforms local pointer names	as follows:

       Before:

	  void foo() { int *local_Constant; }

       After:

	  void foo() { int *pre_local_constant_post; }

       LocalVariableCase
	      When defined, the	check will ensure local	variable names conform
	      to the selected casing.

       LocalVariablePrefix
	      When defined, the	check will ensure local	 variable  names  will
	      add the prefixed with the	given value (regardless	of casing).

       LocalVariableSuffix
	      When  defined,  the  check will ensure local variable names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   LocalVariableCase of lower_case

	   LocalVariablePrefix	of pre_

	   LocalVariableSuffix	of _post

       Identifies and/or transforms local variable names as follows:

       Before:

	  void foo() { int local_Constant; }

       After:

	  void foo() { int pre_local_constant_post; }

       MacroDefinitionCase
	      When defined, the	check will ensure macro	definitions conform to
	      the selected casing.

       MacroDefinitionPrefix
	      When defined, the	check will ensure macro	definitions  will  add
	      the prefixed with	the given value	(regardless of casing).

       MacroDefinitionSuffix
	      When  defined,  the check	will ensure macro definitions will add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   MacroDefinitionCase	of lower_case

	   MacroDefinitionPrefix of pre_

	   MacroDefinitionSuffix of _post

       Identifies and/or transforms macro definitions as follows:

       Before:

	  #define MY_MacroDefinition

       After:

	  #define pre_my_macro_definition_post

       Note: This will not warn	on builtin macros or  macros  defined  on  the
       command line using the -D flag.

       MemberCase
	      When  defined, the check will ensure member names	conform	to the
	      selected casing.

       MemberPrefix
	      When defined, the	check will ensure member names	will  add  the
	      prefixed with the	given value (regardless	of casing).

       MemberSuffix
	      When  defined,  the  check will ensure member names will add the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   MemberCase of lower_case

	   MemberPrefix of pre_

	   MemberSuffix of _post

       Identifies and/or transforms member names as follows:

       Before:

	  class	Foo {
	    char MY_ConstMember_string[4];
	  }

       After:

	  class	Foo {
	    char pre_my_constmember_string_post[4];
	  }

       MethodCase
	      When defined, the	check will ensure method names conform to  the
	      selected casing.

       MethodPrefix
	      When  defined,  the  check will ensure method names will add the
	      prefixed with the	given value (regardless	of casing).

       MethodSuffix
	      When defined, the	check will ensure method names	will  add  the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   MethodCase of lower_case

	   MethodPrefix of pre_

	   MethodSuffix of _post

       Identifies and/or transforms method names as follows:

       Before:

	  class	Foo {
	    char MY_Method_string();
	  }

       After:

	  class	Foo {
	    char pre_my_method_string_post();
	  }

       NamespaceCase
	      When  defined,  the check	will ensure namespace names conform to
	      the selected casing.

       NamespacePrefix
	      When defined, the	check will ensure namespace names will add the
	      prefixed with the	given value (regardless	of casing).

       NamespaceSuffix
	      When defined, the	check will ensure namespace names will add the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   NamespaceCase of lower_case

	   NamespacePrefix of pre_

	   NamespaceSuffix of _post

       Identifies and/or transforms namespace names as follows:

       Before:

	  namespace FOO_NS {
	  ...
	  }

       After:

	  namespace pre_foo_ns_post {
	  ...
	  }

       ParameterCase
	      When defined, the	check will ensure parameter names  conform  to
	      the selected casing.

       ParameterPrefix
	      When defined, the	check will ensure parameter names will add the
	      prefixed with the	given value (regardless	of casing).

       ParameterSuffix
	      When defined, the	check will ensure parameter names will add the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   ParameterCase of lower_case

	   ParameterPrefix of pre_

	   ParameterSuffix of _post

       Identifies and/or transforms parameter names as follows:

       Before:

	  void GLOBAL_FUNCTION(int PARAMETER_1,	int const CONST_parameter);

       After:

	  void GLOBAL_FUNCTION(int pre_parameter_post, int const CONST_parameter);

       ParameterPackCase
	      When defined, the	check will ensure parameter pack names conform
	      to the selected casing.

       ParameterPackPrefix
	      When  defined,  the  check will ensure parameter pack names will
	      add the prefixed with the	given value (regardless	of casing).

       ParameterPackSuffix
	      When defined, the	check will ensure parameter  pack  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ParameterPackCase of lower_case

	   ParameterPackPrefix	of pre_

	   ParameterPackSuffix	of _post

       Identifies and/or transforms parameter pack names as follows:

       Before:

	  template <typename...	TYPE_parameters> {
	    void FUNCTION(int... TYPE_parameters);
	  }

       After:

	  template <typename...	TYPE_parameters> {
	    void FUNCTION(int... pre_type_parameters_post);
	  }

       PointerParameterCase
	      When defined, the	check will ensure pointer parameter names con-
	      form to the selected casing.

       PointerParameterPrefix
	      When defined, the	check will ensure pointer parameter names will
	      add the prefixed with the	given value (regardless	of casing).

       PointerParameterSuffix
	      When defined, the	check will ensure pointer parameter names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   PointerParameterCase of lower_case

	   PointerParameterPrefix of pre_

	   PointerParameterSuffix of _post

       Identifies and/or transforms pointer parameter names as follows:

       Before:

	  void FUNCTION(int *PARAMETER);

       After:

	  void FUNCTION(int *pre_parameter_post);

       PrivateMemberCase
	      When defined, the	check will ensure private member names conform
	      to the selected casing.

       PrivateMemberPrefix
	      When  defined,  the  check will ensure private member names will
	      add the prefixed with the	given value (regardless	of casing).

       PrivateMemberSuffix
	      When defined, the	check will ensure private  member  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   PrivateMemberCase of lower_case

	   PrivateMemberPrefix	of pre_

	   PrivateMemberSuffix	of _post

       Identifies and/or transforms private member names as follows:

       Before:

	  class	Foo {
	  private:
	    int	Member_Variable;
	  }

       After:

	  class	Foo {
	  private:
	    int	pre_member_variable_post;
	  }

       PrivateMethodCase
	      When defined, the	check will ensure private method names conform
	      to the selected casing.

       PrivateMethodPrefix
	      When  defined,  the  check will ensure private method names will
	      add the prefixed with the	given value (regardless	of casing).

       PrivateMethodSuffix
	      When defined, the	check will ensure private  method  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   PrivateMethodCase of lower_case

	   PrivateMethodPrefix	of pre_

	   PrivateMethodSuffix	of _post

       Identifies and/or transforms private method names as follows:

       Before:

	  class	Foo {
	  private:
	    int	Member_Method();
	  }

       After:

	  class	Foo {
	  private:
	    int	pre_member_method_post();
	  }

       ProtectedMemberCase
	      When  defined, the check will ensure protected member names con-
	      form to the selected casing.

       ProtectedMemberPrefix
	      When defined, the	check will ensure protected member names  will
	      add the prefixed with the	given value (regardless	of casing).

       ProtectedMemberSuffix
	      When  defined, the check will ensure protected member names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ProtectedMemberCase	of lower_case

	   ProtectedMemberPrefix of pre_

	   ProtectedMemberSuffix of _post

       Identifies and/or transforms protected member names as follows:

       Before:

	  class	Foo {
	  protected:
	    int	Member_Variable;
	  }

       After:

	  class	Foo {
	  protected:
	    int	pre_member_variable_post;
	  }

       ProtectedMethodCase
	      When defined, the	check will ensure protect method names conform
	      to the selected casing.

       ProtectedMethodPrefix
	      When defined, the	check will ensure protect  method  names  will
	      add the prefixed with the	given value (regardless	of casing).

       ProtectedMethodSuffix
	      When  defined,  the  check will ensure protect method names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   ProtectedMethodCase	of lower_case

	   ProtectedMethodPrefix of pre_

	   ProtectedMethodSuffix of _post

       Identifies and/or transforms protect method names as follows:

       Before:

	  class	Foo {
	  protected:
	    int	Member_Method();
	  }

       After:

	  class	Foo {
	  protected:
	    int	pre_member_method_post();
	  }

       PublicMemberCase
	      When defined, the	check will ensure public member	names  conform
	      to the selected casing.

       PublicMemberPrefix
	      When defined, the	check will ensure public member	names will add
	      the prefixed with	the given value	(regardless of casing).

       PublicMemberSuffix
	      When defined, the	check will ensure public member	names will add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   PublicMemberCase of	lower_case

	   PublicMemberPrefix of pre_

	   PublicMemberSuffix of _post

       Identifies and/or transforms public member names	as follows:

       Before:

	  class	Foo {
	  public:
	    int	Member_Variable;
	  }

       After:

	  class	Foo {
	  public:
	    int	pre_member_variable_post;
	  }

       PublicMethodCase
	      When  defined, the check will ensure public method names conform
	      to the selected casing.

       PublicMethodPrefix
	      When defined, the	check will ensure public method	names will add
	      the prefixed with	the given value	(regardless of casing).

       PublicMethodSuffix
	      When defined, the	check will ensure public method	names will add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   PublicMethodCase of	lower_case

	   PublicMethodPrefix of pre_

	   PublicMethodSuffix of _post

       Identifies and/or transforms public method names	as follows:

       Before:

	  class	Foo {
	  public:
	    int	Member_Method();
	  }

       After:

	  class	Foo {
	  public:
	    int	pre_member_method_post();
	  }

       StaticConstantCase
	      When defined, the	check will ensure static constant  names  con-
	      form to the selected casing.

       StaticConstantPrefix
	      When  defined,  the check	will ensure static constant names will
	      add the prefixed with the	given value (regardless	of casing).

       StaticConstantSuffix
	      When defined, the	check will ensure static constant  names  will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   StaticConstantCase of lower_case

	   StaticConstantPrefix of pre_

	   StaticConstantSuffix of _post

       Identifies and/or transforms static constant names as follows:

       Before:

	  static unsigned const	MyConstStatic_array[] =	{1, 2, 3};

       After:

	  static unsigned const	pre_myconststatic_array_post[] = {1, 2,	3};

       StaticVariableCase
	      When  defined,  the check	will ensure static variable names con-
	      form to the selected casing.

       StaticVariablePrefix
	      When defined, the	check will ensure static variable  names  will
	      add the prefixed with the	given value (regardless	of casing).

       StaticVariableSuffix
	      When  defined,  the check	will ensure static variable names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   StaticVariableCase of lower_case

	   StaticVariablePrefix of pre_

	   StaticVariableSuffix of _post

       Identifies and/or transforms static variable names as follows:

       Before:

	  static unsigned MyStatic_array[] = {1, 2, 3};

       After:

	  static unsigned pre_mystatic_array_post[] = {1, 2, 3};

       StructCase
	      When defined, the	check will ensure struct names conform to  the
	      selected casing.

       StructPrefix
	      When  defined,  the  check will ensure struct names will add the
	      prefixed with the	given value (regardless	of casing).

       StructSuffix
	      When defined, the	check will ensure struct names	will  add  the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   StructCase of lower_case

	   StructPrefix of pre_

	   StructSuffix of _post

       Identifies and/or transforms struct names as follows:

       Before:

	  struct FOO {
	    FOO();
	    ~FOO();
	  };

       After:

	  struct pre_foo_post {
	    pre_foo_post();
	    ~pre_foo_post();
	  };

       TemplateParameterCase
	      When  defined,  the  check  will ensure template parameter names
	      conform to the selected casing.

       TemplateParameterPrefix
	      When defined, the	check will  ensure  template  parameter	 names
	      will  add	 the prefixed with the given value (regardless of cas-
	      ing).

       TemplateParameterSuffix
	      When defined, the	check will  ensure  template  parameter	 names
	      will add the suffix with the given value (regardless of casing).

       For example using values	of:

	   TemplateParameterCase of lower_case

	   TemplateParameterPrefix of pre_

	   TemplateParameterSuffix of _post

       Identifies and/or transforms template parameter names as	follows:

       Before:

	  template <typename T>	class Foo {};

       After:

	  template <typename pre_t_post> class Foo {};

       TemplateTemplateParameterCase
	      When  defined, the check will ensure template template parameter
	      names conform to the selected casing.

       TemplateTemplateParameterPrefix
	      When defined, the	check will ensure template template  parameter
	      names  will add the prefixed with	the given value	(regardless of
	      casing).

       TemplateTemplateParameterSuffix
	      When defined, the	check will ensure template template  parameter
	      names  will  add	the suffix with	the given value	(regardless of
	      casing).

       For example using values	of:

	   TemplateTemplateParameterCase of lower_case

	   TemplateTemplateParameterPrefix of pre_

	   TemplateTemplateParameterSuffix of _post

       Identifies and/or transforms template template parameter	names as  fol-
       lows:

       Before:

	  template <template <typename>	class TPL_parameter, int COUNT_params,
		    typename...	TYPE_parameters>

       After:

	  template <template <typename>	class pre_tpl_parameter_post, int COUNT_params,
		    typename...	TYPE_parameters>

       TypeAliasCase
	      When  defined, the check will ensure type	alias names conform to
	      the selected casing.

       TypeAliasPrefix
	      When defined, the	check will ensure type alias  names  will  add
	      the prefixed with	the given value	(regardless of casing).

       TypeAliasSuffix
	      When  defined,  the  check will ensure type alias	names will add
	      the suffix with the given	value (regardless of casing).

       For example using values	of:

	   TypeAliasCase of lower_case

	   TypeAliasPrefix of pre_

	   TypeAliasSuffix of _post

       Identifies and/or transforms type alias names as	follows:

       Before:

	  using	MY_STRUCT_TYPE = my_structure;

       After:

	  using	pre_my_struct_type_post	= my_structure;

       TypedefCase
	      When defined, the	check will ensure typedef names	conform	to the
	      selected casing.

       TypedefPrefix
	      When defined, the	check will ensure typedef names	will  add  the
	      prefixed with the	given value (regardless	of casing).

       TypedefSuffix
	      When  defined,  the check	will ensure typedef names will add the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   TypedefCase	of lower_case

	   TypedefPrefix of pre_

	   TypedefSuffix of _post

       Identifies and/or transforms typedef names as follows:

       Before:

	  typedef int MYINT;

       After:

	  typedef int pre_myint_post;

       TypeTemplateParameterCase
	      When defined, the	check  will  ensure  type  template  parameter
	      names conform to the selected casing.

       TypeTemplateParameterPrefix
	      When  defined,  the  check  will	ensure type template parameter
	      names will add the prefixed with the given value (regardless  of
	      casing).

       TypeTemplateParameterSuffix
	      When  defined,  the  check  will	ensure type template parameter
	      names will add the suffix	with the given	value  (regardless  of
	      casing).

       For example using values	of:

	   TypeTemplateParameterCase of lower_case

	   TypeTemplateParameterPrefix	of pre_

	   TypeTemplateParameterSuffix	of _post

       Identifies and/or transforms type template parameter names as follows:

       Before:

	  template <template <typename>	class TPL_parameter, int COUNT_params,
		    typename...	TYPE_parameters>

       After:

	  template <template <typename>	class TPL_parameter, int COUNT_params,
		    typename...	pre_type_parameters_post>

       UnionCase
	      When  defined,  the check	will ensure union names	conform	to the
	      selected casing.

       UnionPrefix
	      When defined, the	check will ensure union	 names	will  add  the
	      prefixed with the	given value (regardless	of casing).

       UnionSuffix
	      When  defined,  the  check  will ensure union names will add the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   UnionCase of lower_case

	   UnionPrefix	of pre_

	   UnionSuffix	of _post

       Identifies and/or transforms union names	as follows:

       Before:

	  union	FOO {
	    int	a;
	    char b;
	  };

       After:

	  union	pre_foo_post {
	    int	a;
	    char b;
	  };

       ValueTemplateParameterCase
	      When defined, the	check will  ensure  value  template  parameter
	      names conform to the selected casing.

       ValueTemplateParameterPrefix
	      When  defined,  the  check  will ensure value template parameter
	      names will add the prefixed with the given value (regardless  of
	      casing).

       ValueTemplateParameterSuffix
	      When  defined,  the  check  will ensure value template parameter
	      names will add the suffix	with the given	value  (regardless  of
	      casing).

       For example using values	of:

	   ValueTemplateParameterCase of lower_case

	   ValueTemplateParameterPrefix of pre_

	   ValueTemplateParameterSuffix of _post

       Identifies and/or transforms value template parameter names as follows:

       Before:

	  template <template <typename>	class TPL_parameter, int COUNT_params,
		    typename...	TYPE_parameters>

       After:

	  template <template <typename>	class TPL_parameter, int pre_count_params_post,
		    typename...	TYPE_parameters>

       VariableCase
	      When  defined,  the  check will ensure variable names conform to
	      the selected casing.

       VariablePrefix
	      When defined, the	check will ensure variable names will add  the
	      prefixed with the	given value (regardless	of casing).

       VariableSuffix
	      When  defined, the check will ensure variable names will add the
	      suffix with the given value (regardless of casing).

       For example using values	of:

	   VariableCase of lower_case

	   VariablePrefix of pre_

	   VariableSuffix of _post

       Identifies and/or transforms variable names as follows:

       Before:

	  unsigned MyVariable;

       After:

	  unsigned pre_myvariable_post;

       VirtualMethodCase
	      When defined, the	check will ensure virtual method names conform
	      to the selected casing.

       VirtualMethodPrefix
	      When defined, the	check will ensure virtual  method  names  will
	      add the prefixed with the	given value (regardless	of casing).

       VirtualMethodSuffix
	      When  defined,  the  check will ensure virtual method names will
	      add the suffix with the given value (regardless of casing).

       For example using values	of:

	   VirtualMethodCase of lower_case

	   VirtualMethodPrefix	of pre_

	   VirtualMethodSuffix	of _post

       Identifies and/or transforms virtual method names as follows:

       Before:

	  class	Foo {
	  public:
	    virtual int	MemberFunction();
	  }

       After:

	  class	Foo {
	  public:
	    virtual int	pre_member_function_post();
	  }

   readability-implicit-bool-cast
       This check has been renamed to readability-implicit-bool-conversion.

   readability-implicit-bool-conversion
       This check can be used to find implicit	conversions  between  built-in
       types  and  booleans.  Depending	 on  use case, it may simply help with
       readability of the code,	or in some  cases,  point  to  potential  bugs
       which remain unnoticed due to implicit conversions.

       The  following  is  a real-world	example	of bug which was hiding	behind
       implicit	bool conversion:

	  class	Foo {
	    int	m_foo;

	  public:
	    void setFoo(bool foo) { m_foo = foo; } // warning: implicit	conversion bool	-> int
	    int	getFoo() { return m_foo; }
	  };

	  void use(Foo&	foo) {
	    bool value = foo.getFoo(); // warning: implicit conversion int -> bool
	  }

       This code is the	result of  unsuccessful	 refactoring,  where  type  of
       m_foo changed from bool to int. The programmer forgot to	change all oc-
       currences  of bool, and the remaining code is no	longer correct,	yet it
       still compiles without any visible warnings.

       In addition to issuing warnings,	fix-it	hints  are  provided  to  help
       solve  the  reported issues. This can be	used for improving readability
       of code,	for example:

	  void conversionsToBool() {
	    float floating;
	    bool boolean = floating;
	    // ^ propose replacement: bool boolean = floating != 0.0f;

	    int	integer;
	    if (integer) {}
	    // ^ propose replacement: if (integer != 0)	{}

	    int* pointer;
	    if (!pointer) {}
	    // ^ propose replacement: if (pointer == nullptr) {}

	    while (1) {}
	    // ^ propose replacement: while (true) {}
	  }

	  void functionTakingInt(int param);

	  void conversionsFromBool() {
	    bool boolean;
	    functionTakingInt(boolean);
	    // ^ propose replacement: functionTakingInt(static_cast<int>(boolean));

	    functionTakingInt(true);
	    // ^ propose replacement: functionTakingInt(1);
	  }

       In general, the following conversion types are checked:

        integer expression/literal to boolean (conversion from	a  single  bit
	 bitfield to boolean is	explicitly allowed, since there's no ambiguity
	 / information loss in this case),

        floating expression/literal to	boolean,

        pointer/pointer to member/nullptr/NULL	to boolean,

        boolean  expression/literal  to integer (conversion from boolean to a
	 single	bit bitfield is	explicitly allowed),

        boolean expression/literal to floating.

       The rules for generating	fix-it hints are:

        in case of conversions	from other built-in type to bool, an  explicit
	 comparison  is	 proposed  to make it clear what exactly is being com-
	 pared:

	  bool	boolean	= floating; is changed to bool boolean =  floating  ==
	   0.0f;,

	  for	other  types, appropriate literals are used (0,	0u, 0.0f, 0.0,
	   nullptr),

        in case of negated expressions	conversion to bool, the	 proposed  re-
	 placement with	comparison is simplified:

	  if (!pointer) is changed to if (pointer == nullptr),

        in case of conversions	from bool to other built-in types, an explicit
	 static_cast  is proposed to make it clear that	a conversion is	taking
	 place:

	  int	integer	 =  boolean;  is  changed  to  int  integer   =	  sta-
	   tic_cast<int>(boolean);,

        if  the  conversion is	performed on type literals, an equivalent lit-
	 eral is proposed, according to	what type is  actually	expected,  for
	 example:

	  functionTakingBool(0); is changed to	functionTakingBool(false);,

	  functionTakingInt(true); is changed to functionTakingInt(1);,

	  for	other types, appropriate literals are used (false, true, 0, 1,
	   0u, 1u, 0.0f, 1.0f, 0.0, 1.0f).

       Some additional accommodations are made for pre-C++11 dialects:

        false literal conversion to pointer is	detected,

        instead of nullptr literal, 0 is proposed as replacement.

       Occurrences of implicit conversions inside macros and template  instan-
       tiations	 are deliberately ignored, as it is not	clear how to deal with
       such cases.

   Options
       AllowIntegerConditions
	      When non-zero, the check will allow conditional integer  conver-
	      sions. Default is	0.

       AllowPointerConditions
	      When  non-zero, the check	will allow conditional pointer conver-
	      sions. Default is	0.

   readability-inconsistent-declaration-parameter-name
       Find function declarations which	differ in parameter names.

       Example:

	  // in	foo.hpp:
	  void foo(int a, int b, int c);

	  // in	foo.cpp:
	  void foo(int d, int e, int f); // warning

       This check should help to enforce consistency in	large projects,	 where
       it  often happens that a	definition of function is refactored, changing
       the parameter names, but	its declaration	in header file is not updated.
       With this check,	we can easily find and correct	such  inconsistencies,
       keeping declaration and definition always in sync.

       Unnamed parameters are allowed and are not taken	into account when com-
       paring function declarations, for example:

	  void foo(int a);
	  void foo(int); // no warning

       One  name is also allowed to be a case-insensitive prefix/suffix	of the
       other:

	  void foo(int count);
	  void foo(int count_input) { // no warning
	    int	count =	adjustCount(count_input);
	  }

       To help with refactoring, in some cases fix-it hints are	 generated  to
       align  parameter	 names	to a single naming convention. This works with
       the assumption that the function	definition is the most up-to-date ver-
       sion, as	it directly references parameter names in its body. Example:

	  void foo(int a); // warning and fix-it hint (replace "a" to "b")
	  int foo(int b) { return b + 2; } // definition with use of "b"

       In the case of multiple redeclarations or function template specializa-
       tions, a	warning	is issued for every  redeclaration  or	specialization
       inconsistent  with  the	definition  or the first declaration seen in a
       translation unit.

       IgnoreMacros
	      If this option is	set to non-zero	(default is 1),	the check will
	      not warn about names declared inside macros.

       Strict If this option is	set to non-zero	(default  is  0),  then	 names
	      must match exactly (or be	absent).

   readability-isolate-declaration
       Detects	local  variable	 declarations declaring	more than one variable
       and tries to refactor the code to one statement per declaration.

       The automatic code-transformation will use the same indentation as  the
       original	 for  every  created statement and add a line break after each
       statement.  It keeps the	order of the variable declarations consistent,
       too.

	  void f() {
	    int	* pointer = nullptr, value = 42, * const const_ptr = &value;
	    // This declaration	will be	diagnosed and transformed into:
	    // int * pointer = nullptr;
	    // int value = 42;
	    // int * const const_ptr = &value;
	  }

       The check excludes places where it is necessary or  common  to  declare
       multiple	variables in one statement and there is	no other way supported
       in  the	language. Please note that structured bindings are not consid-
       ered.

	  // It	is not possible	to transform this declaration and doing	the declaration
	  // before the	loop will increase the scope of	the variable 'Begin' and 'End'
	  // which is undesirable.
	  for (int Begin = 0, End = 100; Begin < End; ++Begin);
	  if (int Begin	= 42, Result = some_function(Begin); Begin == Result);

	  // It	is not possible	to transform this declaration because the result is
	  // not functionality preserving as 'j' and 'k' would not be part of the
	  // 'if' statement anymore.
	  if (SomeCondition())
	    int	i = 42,	j = 43,	k = function(i,j);

   Limitations
       Global variables	and member variables are excluded.

       The check currently does	not support the	 automatic  transformation  of
       member-pointer-types.

	  struct S {
	    int	a;
	    const int b;
	    void f() {}
	  };

	  void f() {
	    // Only a diagnostic message is emitted
	    int	S::*p =	&S::a, S::*const q = &S::a;
	  }

       Furthermore,  the transformation	is very	cautious when it detects vari-
       ous kinds of macros or preprocessor directives  in  the	range  of  the
       statement. In this case the transformation will not happen to avoid un-
       expected	side-effects due to macros.

	  #define NULL 0
	  #define MY_NICE_TYPE int **
	  #define VAR_NAME(name) name##__LINE__
	  #define A_BUNCH_OF_VARIABLES int m1 =	42, m2 = 43, m3	= 44;

	  void macros()	{
	    int	*p1 = NULL, *p2	= NULL;
	    // Will be transformed to
	    // int *p1 = NULL;
	    // int *p2 = NULL;

	    MY_NICE_TYPE p3, v1, v2;
	    // Won't be	transformed, but a diagnostic is emitted.

	    int	VAR_NAME(v3),
		VAR_NAME(v4),
		VAR_NAME(v5);
	    // Won't be	transformed, but a diagnostic is emitted.

	    A_BUNCH_OF_VARIABLES
	    // Won't be	transformed, but a diagnostic is emitted.

	    int	Unconditional,
	  #if CONFIGURATION
		IfConfigured = 42,
	  #else
		IfConfigured = 0;
	  #endif
	    // Won't be	transformed, but a diagnostic is emitted.
	  }

   readability-magic-numbers
       Detects	magic numbers, integer or floating point literals that are em-
       bedded in code and not introduced via constants or symbols.

       Many coding guidelines advise replacing the magic values	with  symbolic
       constants to improve readability. Here are a few	references:

	   Rule  ES.45:  Avoid	magic constants; use symbolic constants	in C++
	    Core Guidelines

	   Rule 5.1.1 Use symbolic names instead of literal values in code in
	    High Integrity C++

	   Item 17 in "C++ Coding Standards: 101 Rules, Guidelines  and  Best
	    Practices" by Herb Sutter and Andrei Alexandrescu

	   Chapter  17	 in "Clean Code	- A handbook of	agile software crafts-
	    manship." by Robert	C. Martin

	   Rule 20701 in "TRAIN REAL TIME  DATA  PROTOCOL  Coding  Rules"  by
	    Armin-Hagen	Weiss, Bombardier

	   http://wiki.c2.com/?MagicNumber

       Examples	of magic values:

	  double circleArea = 3.1415926535 * radius * radius;

	  double totalCharge = 1.08 * itemPrice;

	  int getAnswer() {
	     return -3;	// FILENOTFOUND
	  }

	  for (int mm =	1; mm <= 12; ++mm) {
	     std::cout << month[mm] << '\n';
	  }

       Example with magic values refactored:

	  double circleArea = M_PI * radius * radius;

	  const	double TAX_RATE	= 0.08;	 // or make it variable	and read from a	file

	  double totalCharge = (1.0 + TAX_RATE)	* itemPrice;

	  int getAnswer() {
	     return E_FILE_NOT_FOUND;
	  }

	  for (int mm =	1; mm <= MONTHS_IN_A_YEAR; ++mm) {
	     std::cout << month[mm] << '\n';
	  }

       For  integral  literals by default only 0 and 1 (and -1)	integer	values
       are accepted without  a	warning.  This	can  be	 overridden  with  the
       IgnoredIntegerValues  option. Negative values are accepted if their ab-
       solute value is present in the IgnoredIntegerValues list.

       As a special case for integral values, all powers of  two  can  be  ac-
       cepted without warning by enabling the IgnorePowersOf2IntegerValues op-
       tion.

       For  floating point literals by default the 0.0 floating	point value is
       accepted	without	a warning. The set of ignored floating point  literals
       can  be	configured  using  the IgnoredFloatingPointValues option.  For
       each value in that set, the given string	value is converted to a	float-
       ing-point value representation used by the target  architecture.	 If  a
       floating-point  literal	value  compares	 equal to one of the converted
       values, then that literal is  not  diagnosed  by	 this  check.  Because
       floating-point  equality	 is  used  to determine	whether	to diagnose or
       not, the	user needs to be aware of the details of floating-point	repre-
       sentations for any values that  cannot  be  precisely  represented  for
       their target architecture.

       For  each  value	 in  the IgnoredFloatingPointValues set, both the sin-
       gle-precision form and double-precision form are	accepted (for example,
       if 3.14 is in the set, neither 3.14f nor	3.14 will produce a warning).

       Scientific notation is supported	for both source	code input and option.
       Alternatively, the check	for the	floating point numbers can be disabled
       for    all    floating	  point	    values     by     enabling	   the
       IgnoreAllFloatingPointValues option.

       Since  values  0	and 0.0	are so common as the base counter of loops, or
       initialization values for sums, they are	always accepted	without	 warn-
       ing, even if not	present	in the respective ignored values list.

   Options
       IgnoredIntegerValues
	      Semicolon-separated list of magic	positive integers that will be
	      accepted without a warning. Default values are {1, 2, 3, 4}, and
	      0	is accepted unconditionally.

       IgnorePowersOf2IntegerValues
	      Boolean value indicating whether to accept all powers-of-two in-
	      teger values without warning. Default value is false.

       IgnoredFloatingPointValues
	      Semicolon-separated list of magic	positive floating point	values
	      that  will  be  accepted	without	 a warning. Default values are
	      {1.0, 100.0} and 0.0 is accepted unconditionally.

       IgnoreAllFloatingPointValues
	      Boolean value indicating whether to accept  all  floating	 point
	      values without warning. Default value is false.

       IgnoreBitFieldsWidths
	      Boolean  value indicating	whether	to accept magic	numbers	as bit
	      field widths without warning. This is  useful  for  example  for
	      register	definitions which are generated	from hardware specifi-
	      cations. Default value is	true.

   readability-make-member-function-const
       Finds non-static	member functions that can be made  const  because  the
       functions don't use this	in a non-const way.

       This  check  tries  to  annotate	methods	according to logical constness
       (not physical constness).  Therefore, it	will suggest to	 add  a	 const
       qualifier to a non-const	method only if this method does	something that
       is  already  possible though the	public interface on a const pointer to
       the object:

        reading a public member variable

        calling a public const-qualified member function

        returning const-qualified this

        passing const-qualified this as a parameter.

       This check will also suggest to add a const qualifier  to  a  non-const
       method if this method uses private data and functions in	a limited num-
       ber of ways where logical constness and physical	constness coincide:

        reading a member variable of builtin type

       Specifically, this check	will not suggest to add	a const	to a non-const
       method  if  the	method reads a private member variable of pointer type
       because that allows to modify the pointee which might not preserve log-
       ical constness.	For the	same reason, it	does not allow to call private
       member functions	or member functions on private member variables.

       In addition, this check ignores functions that

        are declared virtual

        contain a const_cast

        are templated or part of a class template

        have an empty body

        do	not	(implicitly)	 use	 this	  at	 all	  (see
	 readability-convert-member-functions-to-static).

       The following real-world	examples will be preserved by the check:

	  class	E1 {
	    Pimpl &getPimpl() const;
	  public:
	    int	&get() {
	      // Calling a private member function disables this check.
	      return getPimpl()->i;
	    }
	    ...
	  };

	  class	E2 {
	  public:
	    const int *get() const;
	    // const_cast disables this	check.
	    S *get() {
	      return const_cast<int*>(const_cast<const C*>(this)->get());
	    }
	    ...
	  };

       After  applying	modifications  as  suggested by	the check, running the
       check again might find more  opportunities  to  mark  member  functions
       const.

   readability-misleading-indentation
       Correct indentation helps to understand code. Mismatch of the syntacti-
       cal  structure  and  the	indentation of the code	may hide serious prob-
       lems.  Missing braces can also make it significantly harder to read the
       code, therefore it is important to use braces.

       The way to avoid	dangling else is to always check that an else  belongs
       to the if that begins in	the same column.

       You  can	 omit  braces when your	inner part of e.g. an if statement has
       only one	statement in it. Although in that case you  should  begin  the
       next statement in the same column with the if.

       Examples:

	  // Dangling else:
	  if (cond1)
	    if (cond2)
	      foo1();
	  else
	    foo2();  //	Wrong indentation: else	belongs	to if(cond2) statement.

	  // Missing braces:
	  if (cond1)
	    foo1();
	    foo2();  //	Not guarded by if(cond1).

   Limitations
       Note that this check only works as expected when	the tabs or spaces are
       used consistently and not mixed.

   readability-misplaced-array-index
       This check warns	for unusual array index	syntax.

       The following code has unusual array index syntax:

	  void f(int *X, int Y)	{
	    Y[X] = 0;
	  }

       becomes

	  void f(int *X, int Y)	{
	    X[Y] = 0;
	  }

       The check warns about such unusual syntax for readability reasons:

	      	There  are programmers that are	not familiar with this unusual
		syntax.

	      	It is possible that variables are mixed	up.

   readability-named-parameter
       Find functions with unnamed arguments.

       The check implements the	following rule originating in the  Google  C++
       Style Guide:

       https://google.github.io/styleguide/cppguide.html#Function_Declarations_and_Definitions

       All parameters should be	named, with identical names in the declaration
       and implementation.

       Corresponding cpplint.py	check name: readability/function.

   readability-non-const-parameter
       The  check  finds  function  parameters of a pointer type that could be
       changed to point	to a constant type instead.

       When const is used properly, many mistakes can be  avoided.  Advantages
       when using const	properly:

        prevent unintentional modification of data;

        get additional	warnings such as using uninitialized data;

        make it easier	for developers to see possible side effects.

       This check is not strict	about constness, it only warns when the	const-
       ness will make the function interface safer.

	  // warning here; the declaration "const char *p" would make the function
	  // interface safer.
	  char f1(char *p) {
	    return *p;
	  }

	  // no	warning; the declaration could be more const "const int	* const	p" but
	  // that does not make	the function interface safer.
	  int f2(const int *p) {
	    return *p;
	  }

	  // no	warning; making	x const	does not make the function interface safer
	  int f3(int x)	{
	    return x;
	  }

	  // no	warning; Technically, *p can be	const ("const struct S *p"). But making
	  // *p	const could be misleading. People might	think that it's	safe to	pass
	  // const data	to this	function.
	  struct S { int *a; int *b; };
	  int f3(struct	S *p) {
	    *(p->a) = 0;
	  }

   readability-qualified-auto
       Adds pointer qualifications to auto-typed variables that	are deduced to
       pointers.

       LLVM  Coding Standards advises to make it obvious if a auto typed vari-
       able is a pointer. This check will transform auto to auto  *  when  the
       type is deduced to be a pointer.

	  for (auto Data : MutatablePtrContainer) {
	    change(*Data);
	  }
	  for (auto Data : ConstantPtrContainer) {
	    observe(*Data);
	  }

       Would be	transformed into:

	  for (auto *Data : MutatablePtrContainer) {
	    change(*Data);
	  }
	  for (const auto *Data	: ConstantPtrContainer)	{
	    observe(*Data);
	  }

       Note  const  volatile  qualified	 types	will  retain  their  const and
       volatile	qualifiers. Pointers to	pointers will not be fully qualified.

	  const	auto Foo = cast<int *>(Baz1);
	  const	auto Bar = cast<const int *>(Baz2);
	  volatile auto	FooBar = cast<int *>(Baz3);
	  auto BarFoo =	cast<int **>(Baz4);

       Would be	transformed into:

	  auto *const Foo = cast<int *>(Baz1);
	  const	auto *const Bar	= cast<const int *>(Baz2);
	  auto *volatile FooBar	= cast<int *>(Baz3);
	  auto *BarFoo = cast<int **>(Baz4);

   Options
       AddConstToQualified
	      When set to 1 the	check will add const qualifiers	variables  de-
	      fined  as	 auto  *  or auto & when applicable.  Default value is
	      '1'.

	  auto Foo1 = cast<const int *>(Bar1);
	  auto *Foo2 = cast<const int *>(Bar2);
	  auto &Foo3 = cast<const int &>(Bar3);

       If AddConstToQualified is set to	0,  it will be transformed into:

	  const	auto *Foo1 = cast<const	int *>(Bar1);
	  auto *Foo2 = cast<const int *>(Bar2);
	  auto &Foo3 = cast<const int &>(Bar3);

       Otherwise it will be transformed	into:

	  const	auto *Foo1 = cast<const	int *>(Bar1);
	  const	auto *Foo2 = cast<const	int *>(Bar2);
	  const	auto &Foo3 = cast<const	int &>(Bar3);

       Note in the LLVM	alias, the default value is 0.

   readability-redundant-access-specifiers
       Finds classes, structs, and unions containing redundant	member	(field
       and method) access specifiers.

   Example
	  class	Foo {
	  public:
	    int	x;
	    int	y;
	  public:
	    int	z;
	  protected:
	    int	a;
	  public:
	    int	c;
	  }

       In  the	example	 above,	 the  second public declaration	can be removed
       without any changes of behavior.

   Options
       CheckFirstDeclaration
	      If set to	non-zero, the check will also diagnose	if  the	 first
	      access  specifier	 declaration is	redundant (e.g.	private	inside
	      class, or	public inside struct or	union).	 Default is 0.

   Example
	  struct Bar {
	  public:
	    int	x;
	  }

       If CheckFirstDeclaration	option is enabled, a warning  about  redundant
       access  specifier will be emitted, because public is the	default	member
       access for structs.

   readability-redundant-control-flow
       This check looks	for procedures (functions returning no value) with re-
       turn statements at the end of the function. Such	return statements  are
       redundant.

       Loop  statements	 (for, while, do while)	are checked for	redundant con-
       tinue statements	at the end of the loop body.

       Examples:

       The following function f	contains a redundant return statement:

	  extern void g();
	  void f() {
	    g();
	    return;
	  }

       becomes

	  extern void g();
	  void f() {
	    g();
	  }

       The following function k	contains a redundant continue statement:

	  void k() {
	    for	(int i = 0; i <	10; ++i) {
	      continue;
	    }
	  }

       becomes

	  void k() {
	    for	(int i = 0; i <	10; ++i) {
	    }
	  }

   readability-redundant-declaration
       Finds redundant variable	and function declarations.

	  extern int X;
	  extern int X;

       becomes

	  extern int X;

       Such redundant declarations can be removed without changing program be-
       haviour.	 They can for instance be unintentional	left overs from	previ-
       ous refactorings	when code has been moved around. Having	redundant dec-
       larations could in worst	case mean that there are  typos	 in  the  code
       that cause bugs.

       Normally	the code can be	automatically fixed, clang-tidy	can remove the
       second  declaration. However there are 2	cases when you need to fix the
       code manually:

        When the declarations are in different	header files;

        When multiple variables are declared together.

   Options
       IgnoreMacros
	      If set to	non-zero, the check  will  not	give  warnings	inside
	      macros. Default is 1.

   readability-redundant-function-ptr-dereference
       Finds redundant dereferences of a function pointer.

       Before:

	  int f(int,int);
	  int (*p)(int,	int) = &f;

	  int i	= (**p)(10, 50);

       After:

	  int f(int,int);
	  int (*p)(int,	int) = &f;

	  int i	= (*p)(10, 50);

   readability-redundant-member-init
       Finds  member initializations that are unnecessary because the same de-
       fault constructor would be called if they were not present.

   Example
	  // Explicitly	initializing the member	s is unnecessary.
	  class	Foo {
	  public:
	    Foo() : s()	{}

	  private:
	    std::string	s;
	  };

   Options
       IgnoreBaseInCopyConstructors
	      Default is 0.

	      When non-zero, the check will ignore unnecessary base class ini-
	      tializations within copy constructors, since some	compilers  is-
	      sue warnings/errors when base classes are	not explicitly intial-
	      ized  in	copy  constructors.  For  example, gcc with -Wextra or
	      -Werror=extra issues warning or error base class 'Bar' should be
	      explicitly initialized in	the copy constructor if	Bar() were re-
	      moved in the following example:

	  // Explicitly	initializing member s and base class Bar is unnecessary.
	  struct Foo : public Bar {
	    // Remove s() below. If IgnoreBaseInCopyConstructors!=0, keep Bar().
	    Foo(const Foo& foo)	: Bar(), s() {}
	    std::string	s;
	  };

   readability-redundant-preprocessor
       Finds potentially redundant preprocessor	directives. At the moment  the
       following cases are detected:

        #ifdef	.. #endif pairs	which are nested inside	an outer pair with the
	 same condition. For example:

	  #ifdef FOO
	  #ifdef FOO //	inner ifdef is considered redundant
	  void f();
	  #endif
	  #endif

        Same for #ifndef .. #endif pairs. For example:

	  #ifndef FOO
	  #ifndef FOO // inner ifndef is considered redundant
	  void f();
	  #endif
	  #endif

        #ifndef inside	an #ifdef with the same	condition:

	  #ifdef FOO
	  #ifndef FOO // inner ifndef is considered redundant
	  void f();
	  #endif
	  #endif

        #ifdef	inside an #ifndef with the same	condition:

	  #ifndef FOO
	  #ifdef FOO //	inner ifdef is considered redundant
	  void f();
	  #endif
	  #endif

        #if  ..  #endif  pairs	which are nested inside	an outer pair with the
	 same condition. For example:

	  #define FOO 4
	  #if FOO == 4
	  #if FOO == 4 // inner	if is considered redundant
	  void f();
	  #endif
	  #endif

   readability-redundant-smartptr-get
       Find and	remove redundant calls to smart	pointer's .get() method.

       Examples:

	  ptr.get()->Foo()  ==>	 ptr->Foo()
	  *ptr.get()  ==>  *ptr
	  *ptr->get()  ==>  **ptr
	  if (ptr.get()	== nullptr) ...	=> if (ptr == nullptr) ...

       IgnoreMacros
	      If this option is	set to non-zero	(default is 1),	the check will
	      not warn about calls inside macros.

   readability-redundant-string-cstr
       Finds	 unnecessary	 calls	   to	  std::string::c_str()	   and
       std::string::data().

   readability-redundant-string-init
       Finds unnecessary string	initializations.

   Examples
	  // Initializing string with empty string literal is unnecessary.
	  std::string a	= "";
	  std::string b("");

	  // becomes

	  std::string a;
	  std::string b;

   Options
       StringNames
	      Default is ::std::basic_string.

	      Semicolon-delimited  list	of class names to apply	this check to.
	      By  default  ::std::basic_string	applies	 to  std::string   and
	      std::wstring.	   Set	      to	e.g.	    ::std::ba-
	      sic_string;llvm::StringRef;QString to perform this check on cus-
	      tom classes.

   readability-simplify-boolean-expr
       Looks for boolean expressions involving boolean constants  and  simpli-
       fies them to use	the appropriate	boolean	expression directly.

       Examples:
		    +----------------------------+------------+
		    | Initial expression	 | Result     |
		    +----------------------------+------------+
		    | if (b == true)		 | if (b)     |
		    +----------------------------+------------+
		    | if (b == false)		 | if (!b)    |
		    +----------------------------+------------+
		    | if (b && true)		 | if (b)     |
		    +----------------------------+------------+
		    | if (b && false)		 | if (false) |
		    +----------------------------+------------+
		    | if (b || true)		 | if (true)  |
		    +----------------------------+------------+
		    | if (b || false)		 | if (b)     |
		    +----------------------------+------------+
		    | e	? true : false		 | e	      |
		    +----------------------------+------------+
		    | e	? false	: true		 | !e	      |
		    +----------------------------+------------+
		    | if (true)	t(); else f();	 | t();	      |
		    +----------------------------+------------+
		    | if (false) t(); else f();	 | f();	      |
		    +----------------------------+------------+
		    | if  (e)  return true; else | return e;  |
		    | return false;		 |	      |
		    +----------------------------+------------+
		    | if (e) return false;  else | return !e; |
		    | return true;		 |	      |
		    +----------------------------+------------+
		    | if  (e) b	= true;	else b = | b = e;     |
		    | false;			 |	      |
		    +----------------------------+------------+
		    | if (e) b = false;	else b = | b = !e;    |
		    | true;			 |	      |
		    +----------------------------+------------+
		    | if (e) return true; return | return e;  |
		    | false;			 |	      |
		    +----------------------------+------------+
		    | if (e) return  false;  re- | return !e; |
		    | turn true;		 |	      |
		    +----------------------------+------------+

       The resulting expression	e is modified as follows:

	      1. Unnecessary parentheses around	the expression are removed.

	      2. Negated applications of ! are eliminated.

	      3. Negated  applications	of comparison operators	are changed to
		 use the opposite condition.

	      4. Implicit conversions of pointers, including pointers to  mem-
		 bers,	to  bool  are  replaced	 with  explicit	comparisons to
		 nullptr in C++11 or NULL in C++98/03.

	      5. Implicit casts	to bool	are replaced with  explicit  casts  to
		 bool.

	      6. Object	expressions with explicit operator bool	conversion op-
		 erators are replaced with explicit casts to bool.

	      7. Implicit  conversions	of integral types to bool are replaced
		 with explicit comparisons to 0.

       Examples:

	      1. The ternary assignment	bool b = (i < 0) ? true	:  false;  has
		 redundant parentheses and becomes bool	b = i <	0;.

	      2. The conditional return	if (!b)	return false; return true; has
		 an implied double negation and	becomes	return b;.

	      3. The  conditional return if (i < 0) return false; return true;
		 becomes return	i >= 0;.

		 The conditional return	if (i != 0) return false; return true;
		 becomes return	i == 0;.

	      4. The conditional return	if (p) return true; return false;  has
		 an  implicit  conversion of a pointer to bool and becomes re-
		 turn p	!= nullptr;.

		 The ternary assignment	bool b = (i & 1) ? true	:  false;  has
		 an  implicit conversion of i &	1 to bool and becomes bool b =
		 (i & 1) != 0;.

	      5. The conditional return	if (i &	1) return  true;  else	return
		 false;	 has an	implicit conversion of an integer quantity i &
		 1 to bool and becomes return (i & 1) != 0;

	      6. Given struct X	{ explicit operator bool();  };,  and  an  in-
		 stance	 x  of	struct X, the conditional return if (x)	return
		 true; return false; becomes return static_cast<bool>(x);

   Options
       ChainedConditionalReturn
	      If non-zero, conditional boolean return statements at the	end of
	      an if/else if chain will be transformed. Default is 0.

       ChainedConditionalAssignment
	      If non-zero, conditional boolean assignments at the  end	of  an
	      if/else if chain will be transformed. Default is 0.

   readability-simplify-subscript-expr
       This  check  simplifies	subscript  expressions.	 Currently this	covers
       calling .data() and immediately doing an	array subscript	 operation  to
       obtain  a  single element, in which case	simply calling operator[] suf-
       fice.

       Examples:

	  std::string s	= ...;
	  char c = s.data()[i];	 // char c = s[i];

   Options
       Types  The list	of  type(s)  that  triggers  this  check.  Default  is
	      ::std::basic_string;::std::basic_string_view;::std::vec-
	      tor;::std::array

   readability-static-accessed-through-instance
       Checks  for  member  expressions	that access static members through in-
       stances,	and replaces them with uses of the appropriate qualified-id.

       Example:

       The following code:

	  struct C {
	    static void	foo();
	    static int x;
	  };

	  C *c1	= new C();
	  c1->foo();
	  c1->x;

       is changed to:

	  C *c1	= new C();
	  C::foo();
	  C::x;

   readability-static-definition-in-anonymous-namespace
       Finds static function and variable definitions in anonymous namespace.

       In this case, static is redundant, because anonymous  namespace	limits
       the visibility of definitions to	a single translation unit.

	  namespace {
	    static int a = 1; // Warning.
	    static const b = 1;	// Warning.
	  }

       The check will apply a fix by removing the redundant static qualifier.

   readability-string-compare
       Finds string comparisons	using the compare method.

       A common	mistake	is to use the string's compare method instead of using
       the  equality  or  inequality operators.	The compare method is intended
       for sorting functions and thus returns a	negative  number,  a  positive
       number  or  zero	 depending on the lexicographical relationship between
       the strings compared.  If an equality or	inequality check can  suffice,
       that is recommended. This is recommended	to avoid the risk of incorrect
       interpretation of the return value and to simplify the code. The	string
       equality	 and  inequality operators can also be faster than the compare
       method due to early termination.

       Examples:

	  std::string str1{"a"};
	  std::string str2{"b"};

	  // use str1 != str2 instead.
	  if (str1.compare(str2)) {
	  }

	  // use str1 == str2 instead.
	  if (!str1.compare(str2)) {
	  }

	  // use str1 == str2 instead.
	  if (str1.compare(str2) == 0) {
	  }

	  // use str1 != str2 instead.
	  if (str1.compare(str2) != 0) {
	  }

	  // use str1 == str2 instead.
	  if (0	== str1.compare(str2)) {
	  }

	  // use str1 != str2 instead.
	  if (0	!= str1.compare(str2)) {
	  }

	  // Use str1 == "foo" instead.
	  if (str1.compare("foo") == 0)	{
	  }

       The above code examples shows the list of if-statements that this check
       will give a warning for.	All of them uses compare to check if  equality
       or inequality of	two strings instead of using the correct operators.

   readability-uniqueptr-delete-release
       Replace delete <unique_ptr>.release() with <unique_ptr> = nullptr.  The
       latter  is  shorter,  simpler  and  does	not require use	of raw pointer
       APIs.

	  std::unique_ptr<int> P;
	  delete P.release();

	  // becomes

	  std::unique_ptr<int> P;
	  P = nullptr;

   readability-uppercase-literal-suffix
       cert-dcl16-c redirects here as an alias for this	 check.	  By  default,
       only  the  suffixes  that  begin	with l (l, ll, lu, llu,	but not	u, ul,
       ull) are	diagnosed by that alias.

       hicpp-uppercase-literal-suffix redirects	here  as  an  alias  for  this
       check.

       Detects	when  the integral literal or floating point (decimal or hexa-
       decimal)	literal	has a non-uppercase suffix and provides	a fix-it  hint
       with the	uppercase suffix.

       All valid combinations of suffixes are supported.

	  auto x = 1;  // OK, no suffix.

	  auto x = 1u; // warning: integer literal suffix 'u' is not upper-case

	  auto x = 1U; // OK, suffix is	uppercase.

	  ...

   Options
       NewSuffixes
	      Optionally,  a list of the destination suffixes can be provided.
	      When the suffix is found,	a case-insensitive lookup in that list
	      is made, and if a	replacement is found that  is  different  from
	      the  current  suffix, then the diagnostic	is issued. This	allows
	      for fine-grained control of what suffixes	to consider  and  what
	      their replacements should	be.

   Example
       Given a list L;uL:

        l -> L

        L will	be kept	as is.

        ul -> uL

        Ul -> uL

        UL -> uL

        uL will be kept as is.

        ull will be kept as is, since it is not in the	list

        and so	on.

       IgnoreMacros
	      If this option is	set to non-zero	(default is 1),	the check will
	      not warn about literal suffixes inside macros.

   readability-use-anyofallof
       Finds  range-based  for	loops  that  can  be  replaced	by  a  call to
       std::any_of   or	  std::all_of.	  In	C++    20    mode,    suggests
       std::ranges::any_of or std::ranges::all_of.

       Example:

	  bool all_even(std::vector<int> V) {
	    for	(int I : V) {
	      if (I % 2)
		return false;
	    }
	    return true;
	    // Replace loop by
	    // return std::ranges::all_of(V, [](int I) { return	I % 2 == 0; });
	  }

   zircon-temporary-objects
       Warns  on construction of specific temporary objects in the Zircon ker-
       nel.  If	the object should be flagged, If the object should be flagged,
       the fully qualified type	name must be explicitly	passed to the check.

       For example, given the list of classes "Foo" and	"NS::Bar", all of  the
       following will trigger the warning:

	  Foo();
	  Foo F	= Foo();
	  func(Foo());

	  namespace NS {

	  Bar();

	  }

       With the	same list, the following will not trigger the warning:

	  Foo F;					 // Non-temporary construction okay
	  Foo F(param);			     //	Non-temporary construction okay
	  Foo *F = new Foo();	   // New construction okay

	  Bar();					 // Not	NS::Bar, so okay
	  NS::Bar B;			       // Non-temporary	construction okay

       Note  that objects must be explicitly specified in order	to be flagged,
       and so objects that inherit a specified object will not be flagged.

       This check matches temporary objects without regard for inheritance and
       so a prohibited base class type does  not  similarly  prohibit  derived
       class types.

	  class	Derived	: Foo {} // Derived is not explicitly disallowed
	  Derived();		 // and	so temporary construction is okay

   Options
       Names  A	 semi-colon-separated  list  of	 fully-qualified  names	of C++
	      classes that should not be constructed as	 temporaries.  Default
	      is empty.
     +---------------------------------------------------------+--------------+
     | Name						       | Offers	fixes |
     +---------------------------------------------------------+--------------+
     | abseil-duration-addition				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-duration-comparison			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-duration-conversion-cast			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-duration-division				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-duration-factory-float			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-duration-factory-scale			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-duration-subtraction			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-duration-unnecessary-conversion		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-faster-strsplit-delimiter			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-no-internal-dependencies			       |	      |
     +---------------------------------------------------------+--------------+
     | abseil-no-namespace				       |	      |
     +---------------------------------------------------------+--------------+
     | abseil-redundant-strcat-calls			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-str-cat-append				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-string-find-startswith			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-string-find-str-contains			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-time-comparison				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-time-subtraction				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | abseil-upgrade-duration-conversions		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-accept				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-accept4				       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-creat				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-dup				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-epoll-create			       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-epoll-create1			       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-fopen				       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-inotify-init			       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-inotify-init1			       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-memfd-create			       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-open				       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-pipe				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-pipe2				       |	      |
     +---------------------------------------------------------+--------------+
     | android-cloexec-socket				       |	      |
     +---------------------------------------------------------+--------------+
     | android-comparison-in-temp-failure-retry		       |	      |
     +---------------------------------------------------------+--------------+
     | boost-use-to-string				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-argument-comment			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-assert-side-effect			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-bad-signal-to-kill-thread		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-bool-pointer-implicit-conversion	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-branch-clone				       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-copy-constructor-init			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-dangling-handle				       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-dynamic-static-initializers		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-exception-escape			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-fold-init-type				       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-forward-declaration-namespace		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-forwarding-reference-overload		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-inaccurate-erase			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-incorrect-roundings			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-infinite-loop				       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-integer-division			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-lambda-function-name			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-macro-parentheses			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-macro-repeated-side-effects		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-misplaced-operator-in-strlen-in-alloc	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-misplaced-pointer-arithmetic-in-alloc	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-misplaced-widening-cast			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-move-forwarding-reference		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-multiple-statement-macro		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-no-escape				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-not-null-terminated-result		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-parent-virtual-call			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-posix-return				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-reserved-identifier			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-signed-char-misuse			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-sizeof-container			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-sizeof-expression			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-spuriously-wake-up-functions		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-string-constructor			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-string-integer-assignment		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-string-literal-with-embedded-nul	       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-suspicious-enum-usage			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-suspicious-include			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-suspicious-memset-usage			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-suspicious-missing-comma		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-suspicious-semicolon			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-suspicious-string-compare		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-swapped-arguments			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-terminating-continue			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-throw-keyword-missing			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-too-small-loop-variable			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-undefined-memory-manipulation		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-undelegated-constructor			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-unhandled-self-assignment		       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-unused-raii				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | bugprone-unused-return-value			       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-use-after-move				       |	      |
     +---------------------------------------------------------+--------------+
     | bugprone-virtual-near-miss			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | cert-dcl21-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-dcl50-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-dcl58-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-env33-c					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-err34-c					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-err52-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-err58-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-err60-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-flp30-c					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-mem57-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-msc50-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-msc51-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-oop57-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | cert-oop58-cpp					       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-core.DynamicTypePropagation	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-core.uninitialized.CapturedBlockVariable |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-cplusplus.InnerPointer		       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-nullability.NullableReturnedFromNonnull  |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-optin.osx.OSObjectCStyleCast	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-optin.performance.GCDAntipattern	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-optin.performance.Padding		       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-optin.portability.UnixAPI		       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.MIG				       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.NumberObjectConversion	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.OSObjectRetainCount		       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.ObjCProperty			       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.cocoa.AutoreleaseWrite	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.cocoa.Loops			       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.cocoa.MissingSuperCall	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.cocoa.NonNilReturnValue	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-osx.cocoa.RunLoopAutoreleaseLeak	       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-valist.CopyToSelf			       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-valist.Uninitialized		       |	      |
     +---------------------------------------------------------+--------------+
     | clang-analyzer-valist.Unterminated		       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-avoid-goto			       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-avoid-non-const-global-variables      |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-init-variables			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-interfaces-global-init		       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-macro-usage			       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-narrowing-conversions		       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-no-malloc			       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-owning-memory			       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-bounds-array-to-pointer-decay     |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-bounds-constant-array-index       | Yes	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-bounds-pointer-arithmetic	       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-type-const-cast		       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-type-cstyle-cast		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-type-member-init		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-type-reinterpret-cast	       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-type-static-cast-downcast	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-type-union-access		       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-pro-type-vararg		       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-slicing			       |	      |
     +---------------------------------------------------------+--------------+
     | cppcoreguidelines-special-member-functions	       |	      |
     +---------------------------------------------------------+--------------+
     | darwin-avoid-spinlock				       |	      |
     +---------------------------------------------------------+--------------+
     | darwin-dispatch-once-nonstatic			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | fuchsia-default-arguments-calls			       |	      |
     +---------------------------------------------------------+--------------+
     | fuchsia-default-arguments-declarations		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | fuchsia-multiple-inheritance			       |	      |
     +---------------------------------------------------------+--------------+
     | fuchsia-overloaded-operator			       |	      |
     +---------------------------------------------------------+--------------+
     | fuchsia-statically-constructed-objects		       |	      |
     +---------------------------------------------------------+--------------+
     | fuchsia-trailing-return				       |	      |
     +---------------------------------------------------------+--------------+
     | fuchsia-virtual-inheritance			       |	      |
     +---------------------------------------------------------+--------------+
     | google-build-explicit-make-pair			       |	      |
     +---------------------------------------------------------+--------------+
     | google-build-namespaces				       |	      |
     +---------------------------------------------------------+--------------+
     | google-build-using-namespace			       |	      |
     +---------------------------------------------------------+--------------+
     | google-default-arguments				       |	      |
     +---------------------------------------------------------+--------------+
     | google-explicit-constructor			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | google-global-names-in-headers			       |	      |
     +---------------------------------------------------------+--------------+
     | google-objc-avoid-nsobject-new			       |	      |
     +---------------------------------------------------------+--------------+
     | google-objc-avoid-throwing-exception		       |	      |
     +---------------------------------------------------------+--------------+
     | google-objc-function-naming			       |	      |
     +---------------------------------------------------------+--------------+
     | google-objc-global-variable-declaration		       |	      |
     +---------------------------------------------------------+--------------+
     | google-readability-avoid-underscore-in-googletest-name  |	      |
     +---------------------------------------------------------+--------------+
     | google-readability-casting			       |	      |
     +---------------------------------------------------------+--------------+
     | google-readability-todo				       |	      |
     +---------------------------------------------------------+--------------+
     | google-runtime-int				       |	      |
     +---------------------------------------------------------+--------------+
     | google-runtime-operator				       |	      |
     +---------------------------------------------------------+--------------+
     | google-runtime-references			       |	      |
     +---------------------------------------------------------+--------------+
     | google-upgrade-googletest-case			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | hicpp-avoid-goto					       |	      |
     +---------------------------------------------------------+--------------+
     | hicpp-exception-baseclass			       |	      |
     +---------------------------------------------------------+--------------+
     | hicpp-multiway-paths-covered			       |	      |
     +---------------------------------------------------------+--------------+
     | hicpp-no-assembler				       |	      |
     +---------------------------------------------------------+--------------+
     | hicpp-signed-bitwise				       |	      |
     +---------------------------------------------------------+--------------+
     | linuxkernel-must-use-errs			       |	      |
     +---------------------------------------------------------+--------------+
     | llvm-header-guard				       |	      |
     +---------------------------------------------------------+--------------+
     | llvm-include-order				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | llvm-namespace-comment				       |	      |
     +---------------------------------------------------------+--------------+
     | llvm-prefer-isa-or-dyn-cast-in-conditionals	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | llvm-prefer-register-over-unsigned		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | llvm-twine-local					       | Yes	      |
     +---------------------------------------------------------+--------------+
     | llvmlibc-callee-namespace			       |	      |
     +---------------------------------------------------------+--------------+
     | llvmlibc-implementation-in-namespace		       |	      |
     +---------------------------------------------------------+--------------+
     | llvmlibc-restrict-system-libc-headers		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | misc-definitions-in-headers			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | misc-misplaced-const				       |	      |
     +---------------------------------------------------------+--------------+
     | misc-new-delete-overloads			       |	      |
     +---------------------------------------------------------+--------------+
     | misc-no-recursion				       |	      |
     +---------------------------------------------------------+--------------+
     | misc-non-copyable-objects			       |	      |
     +---------------------------------------------------------+--------------+
     | misc-non-private-member-variables-in-classes	       |	      |
     +---------------------------------------------------------+--------------+
     | misc-redundant-expression			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | misc-static-assert				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | misc-throw-by-value-catch-by-reference		       |	      |
     +---------------------------------------------------------+--------------+
     | misc-unconventional-assign-operator		       |	      |
     +---------------------------------------------------------+--------------+
     | misc-uniqueptr-reset-release			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | misc-unused-alias-decls				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | misc-unused-parameters				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | misc-unused-using-decls				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-avoid-bind				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-avoid-c-arrays				       |	      |
     +---------------------------------------------------------+--------------+
     | modernize-concat-nested-namespaces		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-deprecated-headers			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-deprecated-ios-base-aliases		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-loop-convert				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-make-shared				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-make-unique				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-pass-by-value				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-raw-string-literal			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-redundant-void-arg			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-replace-auto-ptr			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-replace-disallow-copy-and-assign-macro	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-replace-random-shuffle			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-return-braced-init-list		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-shrink-to-fit				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-unary-static-assert			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-auto				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-bool-literals			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-default-member-init		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-emplace				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-equals-default			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-equals-delete			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-nodiscard				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-noexcept				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-nullptr				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-override				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-trailing-return-type		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-transparent-functors		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-uncaught-exceptions		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | modernize-use-using				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | mpi-buffer-deref					       | Yes	      |
     +---------------------------------------------------------+--------------+
     | mpi-type-mismatch				       | Yes	      |
     +---------------------------------------------------------+--------------+
     | objc-avoid-nserror-init				       |	      |
     +---------------------------------------------------------+--------------+
     | objc-dealloc-in-category				       |	      |
     +---------------------------------------------------------+--------------+
     | objc-forbidden-subclassing			       |	      |
     +---------------------------------------------------------+--------------+
     | objc-missing-hash				       |	      |
     +---------------------------------------------------------+--------------+
     | objc-nsinvocation-argument-lifetime		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | objc-property-declaration			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | objc-super-self					       | Yes	      |
     +---------------------------------------------------------+--------------+
     | openmp-exception-escape				       |	      |
     +---------------------------------------------------------+--------------+
     | openmp-use-default-none				       |	      |
     +---------------------------------------------------------+--------------+
     | performance-faster-string-find			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-for-range-copy			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-implicit-conversion-in-loop		       |	      |
     +---------------------------------------------------------+--------------+
     | performance-inefficient-algorithm		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-inefficient-string-concatenation	       |	      |
     +---------------------------------------------------------+--------------+
     | performance-inefficient-vector-operation		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-move-const-arg			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-move-constructor-init		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-no-automatic-move			       |	      |
     +---------------------------------------------------------+--------------+
     | performance-noexcept-move-constructor		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-trivially-destructible		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-type-promotion-in-math-fn		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | performance-unnecessary-copy-initialization	       |	      |
     +---------------------------------------------------------+--------------+
     | performance-unnecessary-value-param		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | portability-restrict-system-includes		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | portability-simd-intrinsics			       |	      |
     +---------------------------------------------------------+--------------+
     | readability-avoid-const-params-in-decls		       |	      |
     +---------------------------------------------------------+--------------+
     | readability-braces-around-statements		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-const-return-type			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-container-size-empty			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-convert-member-functions-to-static	       |	      |
     +---------------------------------------------------------+--------------+
     | readability-delete-null-pointer			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-deleted-default			       |	      |
     +---------------------------------------------------------+--------------+
     | readability-else-after-return			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-function-size			       |	      |
     +---------------------------------------------------------+--------------+
     | readability-identifier-naming			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-implicit-bool-conversion		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-inconsistent-declaration-parameter-name     | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-isolate-declaration			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-magic-numbers			       |	      |
     +---------------------------------------------------------+--------------+
     | readability-make-member-function-const		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-misleading-indentation		       |	      |
     +---------------------------------------------------------+--------------+
     | readability-misplaced-array-index		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-named-parameter			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-non-const-parameter			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-qualified-auto			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-access-specifiers		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-control-flow		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-declaration		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-function-ptr-dereference	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-member-init		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-preprocessor		       |	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-smartptr-get		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-string-cstr		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-redundant-string-init		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-simplify-boolean-expr		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-simplify-subscript-expr		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-static-accessed-through-instance	       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-static-definition-in-anonymous-namespace    | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-string-compare			       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-uniqueptr-delete-release		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-uppercase-literal-suffix		       | Yes	      |
     +---------------------------------------------------------+--------------+
     | readability-use-anyofallof			       |	      |
     +---------------------------------------------------------+--------------+
     | zircon-temporary-objects				       |	      |
     +---------------------------------------------------------+--------------+

   Aliases..
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| Name										| Redirect					      |	Offers fixes |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-con36-c									| bugprone-spuriously-wake-up-functions		      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-con54-cpp								| bugprone-spuriously-wake-up-functions		      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-dcl03-c									| misc-static-assert				      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-dcl16-c									| readability-uppercase-literal-suffix		      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-dcl37-c									| bugprone-reserved-identifier			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-dcl51-cpp								| bugprone-reserved-identifier			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-dcl54-cpp								| misc-new-delete-overloads			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-dcl59-cpp								| google-build-namespaces			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-err09-cpp								| misc-throw-by-value-catch-by-reference	      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-err61-cpp								| misc-throw-by-value-catch-by-reference	      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-fio38-c									| misc-non-copyable-objects			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-msc30-c									| cert-msc50-cpp				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-msc32-c									| cert-msc51-cpp				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-oop11-cpp								| performance-move-constructor-init		      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-oop54-cpp								| bugprone-unhandled-self-assignment		      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-pos44-c									| bugprone-bad-signal-to-kill-thread		      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cert-str34-c									| bugprone-signed-char-misuse			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.CallAndMessage						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.DivideZero						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.NonNullParamChecker					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.NullDereference						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.StackAddressEscape					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.UndefinedBinaryOperatorResult				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.VLASize							| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.uninitialized.ArraySubscript				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.uninitialized.Assign					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.uninitialized.Branch					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-core.uninitialized.UndefReturn					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-cplusplus.Move							| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-cplusplus.NewDelete						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-cplusplus.NewDeleteLeaks					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-deadcode.DeadStores						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-nullability.NullPassedToNonnull				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-nullability.NullReturnedFromNonnull				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-nullability.NullableDereferenced				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-nullability.NullablePassedToNonnull				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-optin.cplusplus.UninitializedObject				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-optin.cplusplus.VirtualCall					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-optin.mpi.MPI-Checker						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-optin.osx.cocoa.localizability.EmptyLocalizationContextChecker	| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-optin.osx.cocoa.localizability.NonLocalizedStringChecker	| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.API							| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.SecKeychainAPI						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.AtSync						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.ClassRelease						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.Dealloc						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.IncompatibleMethodTypes				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.NSAutoreleasePool					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.NSError						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.NilArg						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.ObjCGenerics						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.RetainCount						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.SelfInit						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.SuperDealloc						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.UnusedIvars						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.cocoa.VariadicMethodTypes					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.coreFoundation.CFError					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.coreFoundation.CFNumber					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.coreFoundation.CFRetainRelease				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.coreFoundation.containers.OutOfBounds			| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-osx.coreFoundation.containers.PointerSizedValues		| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.FloatLoopCounter					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling		| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.UncheckedReturn				| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.bcmp					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.bcopy					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.bzero					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.getpw					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.gets					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.mkstemp					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.mktemp					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.rand					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.strcpy					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-security.insecureAPI.vfork					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-unix.API							| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-unix.Malloc							| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-unix.MallocSizeof						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-unix.MismatchedDeallocator					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-unix.Vfork							| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-unix.cstring.BadSizeArg					| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| clang-analyzer-unix.cstring.NullArg						| Clang	Static Analyzer				      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cppcoreguidelines-avoid-c-arrays						| modernize-avoid-c-arrays			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cppcoreguidelines-avoid-magic-numbers						| readability-magic-numbers			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cppcoreguidelines-c-copy-assignment-signature					| misc-unconventional-assign-operator		      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cppcoreguidelines-explicit-virtual-functions					| modernize-use-override			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| cppcoreguidelines-non-private-member-variables-in-classes			| misc-non-private-member-variables-in-classes	      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| fuchsia-header-anon-namespaces						| google-build-namespaces			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| google-readability-braces-around-statements					| readability-braces-around-statements		      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| google-readability-function-size						| readability-function-size			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| google-readability-namespace-comments						| llvm-namespace-comment			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-avoid-c-arrays								| modernize-avoid-c-arrays			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-braces-around-statements						| readability-braces-around-statements		      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-deprecated-headers							| modernize-deprecated-headers			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-explicit-conversions							| google-explicit-constructor			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-function-size								| readability-function-size			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-invalid-access-moved							| bugprone-use-after-move			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-member-init								| cppcoreguidelines-pro-type-member-init	      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-move-const-arg								| performance-move-const-arg			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-named-parameter								| readability-named-parameter			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-new-delete-operators							| misc-new-delete-overloads			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-no-array-decay								| cppcoreguidelines-pro-bounds-array-to-pointer-decay |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-no-malloc								| cppcoreguidelines-no-malloc			      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-noexcept-move								| performance-noexcept-move-constructor		      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-special-member-functions						| cppcoreguidelines-special-member-functions	      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-static-assert								| misc-static-assert				      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-undelegated-constructor							| bugprone-undelegated-constructor		      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-uppercase-literal-suffix						| readability-uppercase-literal-suffix		      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-use-auto								| modernize-use-auto				      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-use-emplace								| modernize-use-emplace				      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-use-equals-default							| modernize-use-equals-default			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-use-equals-delete							| modernize-use-equals-delete			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-use-noexcept								| modernize-use-noexcept			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-use-nullptr								| modernize-use-nullptr				      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-use-override								| modernize-use-override			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| hicpp-vararg									| cppcoreguidelines-pro-type-vararg		      |		     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| llvm-else-after-return							| readability-else-after-return			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+
| llvm-qualified-auto								| readability-qualified-auto			      |	Yes	     |
+-------------------------------------------------------------------------------+-----------------------------------------------------+--------------+

   Clang-tidy IDE/Editor Integrations
       Apart from being	a standalone tool, clang-tidy is integrated into vari-
       ous  IDEs,  code	analyzers, and editors.	Besides, it is currently being
       integrated into Clangd. The following table shows the  most  well-known
       clang-tidy integrations in detail.
 +-------------+------------+-------------+-------------+-------------+------------+
 |	       | Feature    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | Tool	       | On-the-fly | Check  list | Options  to	| Configura-  |	Custom	   |
 |	       | inspection | configura-  | checks	| tion	  via |	clang-tidy |
 |	       |	    | tion (GUI)  | (GUI)	| .clang-tidy |	binary	   |
 |	       |	    |		  |		| files	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | A.L.E.  for | +	    | -		  | -		| -	      |	+	   |
 | Vim	       |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | Clang Power | -	    | +		  | -		| +	      |	-	   |
 | Tools   for |	    |		  |		|	      |		   |
 | Visual Stu- |	    |		  |		|	      |		   |
 | dio	       |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | Clangd      | +	    | -		  | -		| -	      |	-	   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | CLion IDE   | +	    | +		  | +		| +	      |	+	   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | CodeChecker | -	    | -		  | -		| -	      |	+	   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | CPPCheck    | -	    | -		  | -		| -	      |	-	   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | CPPDepend   | -	    | -		  | -		| -	      |	-	   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | Flycheck    | +	    | -		  | -		| +	      |	+	   |
 | for Emacs   |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | KDevelop    | -	    | +		  | +		| +	      |	+	   |
 | IDE	       |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | Qt  Creator | +	    | +		  | -		| +	      |	+	   |
 | IDE	       |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | ReSharper   | +	    | +		  | -		| +	      |	+	   |
 | C++ for Vi- |	    |		  |		|	      |		   |
 | sual	Studio |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | Syntastic   | +	    | -		  | -		| -	      |	+	   |
 | for Vim     |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+
 | Visual  As- | +	    | +		  | -		| -	      |	-	   |
 | sist	   for |	    |		  |		|	      |		   |
 | Visual Stu- |	    |		  |		|	      |		   |
 | dio	       |	    |		  |		|	      |		   |
 +-------------+------------+-------------+-------------+-------------+------------+

       IDEs

       CLion  2017.2  and  later  integrates clang-tidy	as an extension	to the
       built-in	code analyzer. Starting	from 2018.2 EAP,  CLion	 allows	 using
       clang-tidy  via Clangd. Inspections and applicable quick-fixes are per-
       formed on the fly, and checks can be  configured	 in  standard  command
       line  format. In	this integration, you can switch to the	clang-tidy bi-
       nary  different	from  the  bundled  one,  pass	the  configuration  in
       .clang-tidy  files instead of using the IDE settings, and configure op-
       tions for particular checks.

       KDevelop	with the kdev-clang-tidy plugin, starting  from	 version  5.1,
       performs	 static	 analysis  using  clang-tidy.  The plugin launches the
       clang-tidy binary from the specified location and parses	its output  to
       provide a list of issues.

       QtCreator  4.6  integrates clang-tidy warnings into the editor diagnos-
       tics under the Clang Code Model.	To employ clang-tidy inspection	in Qt-
       Creator,	you need to create a copy of one of the	presets	and choose the
       checks to be performed. Since QtCreator 4.7  project-wide  analysis  is
       possible	with the Clang Tools analyzer.

       MS  Visual  Studio has a	native clang-tidy-vs plugin and	also can inte-
       grate clang-tidy	by means of three other	tools. The ReSharper  C++  ex-
       tension,	 version  2017.3 and later, provides seamless clang-tidy inte-
       gration:	checks and quick-fixes run alongside native inspections. Apart
       from that, ReSharper C++	incorporates clang-tidy	as a separate step  of
       its  code  clean-up process. Visual Assist build	2210 includes a	subset
       of clang-tidy checklist to inspect the code as you edit.	  Another  way
       to  bring  clang-tidy functionality to Visual Studio is the Clang Power
       Tools plugin, which includes most of the	 clang-tidy  checks  and  runs
       them during compilation or as a separate	step of	code analysis.

       Editors

       Emacs24,	 when  expanded	 with  the  Flycheck  plugin, incorporates the
       clang-tidy inspection into the syntax analyzer. For Vim,	 you  can  use
       Syntastic, which	includes clang-tidy, or	A.L.E.,	a lint engine that ap-
       plies clang-tidy	along with other linters.

       Analyzers

       clang-tidy  is integrated in CPPDepend starting from version 2018.1 and
       CPPCheck	1.82. CPPCheck integration lets	you import Visual Studio solu-
       tions and run the clang-tidy inspection on them.	The CodeChecker	appli-
       cation of version 5.3 or	later,	which  also  comes  as	a  plugin  for
       Eclipse,	supports clang-tidy as a static	analysis instrument and	allows
       to use a	custom clang-tidy binary.

   Getting Involved
       clang-tidy  has	several	 own  checks and can run Clang static analyzer
       checks, but its power is	in the ability to easily write custom checks.

       Checks are organized in modules,	which can be  linked  into  clang-tidy
       with minimal or no code changes in clang-tidy.

       Checks  can  plug  into	the  analysis  on the preprocessor level using
       PPCallbacks or on the AST level using AST Matchers. When	 an  error  is
       found, checks can report	them in	a way similar to how Clang diagnostics
       work. A fix-it hint can be attached to a	diagnostic message.

       The  interface provided by clang-tidy makes it easy to write useful and
       precise checks in just a	few lines of code. If you have an idea	for  a
       good check, the rest of this document explains how to do	this.

       There are a few tools particularly useful when developing clang-tidy
       checks:

	      	add_new_check.py is a script to	automate the process of	adding
		a  new	check, it will create the check, update	the CMake file
		and create a test;

	      	rename_check.py	does what the script name suggests, renames an
		existing check;

	      	clang-query is invaluable for interactive prototyping  of  AST
		matchers and exploration of the	Clang AST;

	      	clang-check  with the -ast-dump	(and optionally	-ast-dump-fil-
		ter) provides a	convenient way to dump AST of a	C++ program.

       If CMake	is configured  with  CLANG_ENABLE_STATIC_ANALYZER,  clang-tidy
       will  not  be built with	support	for the	clang-analyzer-* checks	or the
       mpi-* checks.

   Choosing the	Right Place for	your Check
       If you have an idea of a	check, you should decide whether it should  be
       implemented as a:

        Clang	diagnostic:  if	the check is generic enough, targets code pat-
	 terns that most probably are bugs (rather than	style  or  readability
	 issues),  can be implemented effectively and with extremely low false
	 positive rate,	it may make a good Clang diagnostic.

        Clang static analyzer check: if the check requires some sort of  con-
	 trol flow analysis, it	should probably	be implemented as a static an-
	 alyzer	check.

        clang-tidy  check  is	a  good	choice for linter-style	checks,	checks
	 that are related to a certain coding style, checks that address  code
	 readability, etc.

   Preparing your Workspace
       If you are new to LLVM development, you should read the Getting Started
       with  the LLVM System, Using Clang Tools	and How	To Setup Clang Tooling
       For LLVM	documents to check out and build LLVM, Clang and  Clang	 Extra
       Tools with CMake.

       Once  you are done, change to the llvm/clang-tools-extra	directory, and
       let's start!

   The Directory Structure
       clang-tidy source code resides in the llvm/clang-tools-extra  directory
       and is structured as follows:

	  clang-tidy/			    # Clang-tidy core.
	  |-- ClangTidy.h		    # Interfaces for users.
	  |-- ClangTidyCheck.h		    # Interfaces for checks.
	  |-- ClangTidyModule.h		    # Interface	for clang-tidy modules.
	  |-- ClangTidyModuleRegistry.h	    # Interface	for registering	of modules.
	     ...
	  |-- google/			    # Google clang-tidy	module.
	  |-+
	    |--	GoogleTidyModule.cpp
	    |--	GoogleTidyModule.h
		  ...
	  |-- llvm/			    # LLVM clang-tidy module.
	  |-+
	    |--	LLVMTidyModule.cpp
	    |--	LLVMTidyModule.h
		  ...
	  |-- objc/			    # Objective-C clang-tidy module.
	  |-+
	    |--	ObjCTidyModule.cpp
	    |--	ObjCTidyModule.h
		  ...
	  |-- tool/			    # Sources of the clang-tidy	binary.
		  ...
	  test/clang-tidy/		    # Integration tests.
	      ...
	  unittests/clang-tidy/		    # Unit tests.
	  |-- ClangTidyTest.h
	  |-- GoogleModuleTest.cpp
	  |-- LLVMModuleTest.cpp
	  |-- ObjCModuleTest.cpp
	      ...

   Writing a clang-tidy	Check
       So you have an idea of a	useful check for clang-tidy.

       First,  if  you're not familiar with LLVM development, read through the
       Getting Started with LLVM document for instructions on setting up  your
       workflow	and the	LLVM Coding Standards document to familiarize yourself
       with  the  coding style used in the project. For	code reviews we	mostly
       use LLVM	Phabricator.

       Next, you need to decide	which module the check belongs to. Modules are
       located in subdirectories of clang-tidy/	and contain checks targeting a
       certain aspect of code quality (performance, readability,  etc.),  cer-
       tain  coding  style or standard (Google,	LLVM, CERT, etc.)  or a	widely
       used API	(e.g. MPI). Their names	are same as user-facing	 check	groups
       names described above.

       After  choosing	the  module  and  the  name  for  the  check,  run the
       clang-tidy/add_new_check.py script to create the	skeleton of the	 check
       and  plug  it  to  clang-tidy.  It's  the recommended way of adding new
       checks.

       If we want to create  a	readability-awesome-function-names,  we	 would
       run:

	  $ clang-tidy/add_new_check.py	readability awesome-function-names

       The add_new_check.py script will:

	      	create	the class for your check inside	the specified module's
		directory and register it in the module	and in the build  sys-
		tem;

	      	create a lit test file in the test/clang-tidy/ directory;

	      	create	 a   documentation   file  and	include	 it  into  the
		docs/clang-tidy/checks/list.rst.

       Let's see in more detail	at the check class definition:

	  ...

	  #include "../ClangTidyCheck.h"

	  namespace clang {
	  namespace tidy {
	  namespace readability	{

	  ...
	  class	AwesomeFunctionNamesCheck : public ClangTidyCheck {
	  public:
	    AwesomeFunctionNamesCheck(StringRef	Name, ClangTidyContext *Context)
		: ClangTidyCheck(Name, Context)	{}
	    void registerMatchers(ast_matchers::MatchFinder *Finder) override;
	    void check(const ast_matchers::MatchFinder::MatchResult &Result) override;
	  };

	  } // namespace readability
	  } // namespace tidy
	  } // namespace clang

	  ...

       Constructor of the check	receives the Name and Context parameters,  and
       must forward them to the	ClangTidyCheck constructor.

       In  our	case  the check	needs to operate on the	AST level and it over-
       rides the registerMatchers and check methods. If	we wanted  to  analyze
       code  on	the preprocessor level,	we'd need instead to override the reg-
       isterPPCallbacks	method.

       In the registerMatchers method we create	an AST Matcher (see AST	Match-
       ers for more information) that will find	the pattern in the AST that we
       want to inspect.	The results of the matching are	passed	to  the	 check
       method, which can further inspect them and report diagnostics.

	  using	namespace ast_matchers;

	  void AwesomeFunctionNamesCheck::registerMatchers(MatchFinder *Finder)	{
	    Finder->addMatcher(functionDecl().bind("x"), this);
	  }

	  void AwesomeFunctionNamesCheck::check(const MatchFinder::MatchResult &Result)	{
	    const auto *MatchedDecl = Result.Nodes.getNodeAs<FunctionDecl>("x");
	    if (MatchedDecl->getName().startswith("awesome_"))
	      return;
	    diag(MatchedDecl->getLocation(), "function %0 is insufficiently awesome")
		<< MatchedDecl
		<< FixItHint::CreateInsertion(MatchedDecl->getLocation(), "awesome_");
	  }

       (If   you   want	 to  see  an  example  of  a  useful  check,  look  at
       clang-tidy/google/ExplicitConstructorCheck.h			   and
       clang-tidy/google/ExplicitConstructorCheck.cpp).

   Registering your Check
       (The  add_new_check.py takes care of registering	the check in an	exist-
       ing module. If you want to create a new module  or  know	 the  details,
       read on.)

       The  check should be registered in the corresponding module with	a dis-
       tinct name:

	  class	MyModule : public ClangTidyModule {
	   public:
	    void addCheckFactories(ClangTidyCheckFactories &CheckFactories) override {
	      CheckFactories.registerCheck<ExplicitConstructorCheck>(
		  "my-explicit-constructor");
	    }
	  };

       Now we need to register the module in the ClangTidyModuleRegistry using
       a statically initialized	variable:

	  static ClangTidyModuleRegistry::Add<MyModule>	X("my-module",
							  "Adds	my lint	checks.");

       When using LLVM build system, we	need to	use the	following hack to  en-
       sure the	module is linked into the clang-tidy binary:

       Add this	near the ClangTidyModuleRegistry::Add<MyModule>	variable:

	  // This anchor is used to force the linker to	link in	the generated object file
	  // and thus register the MyModule.
	  volatile int MyModuleAnchorSource = 0;

       And  this to the	main translation unit of the clang-tidy	binary (or the
       binary you link the clang-tidy library  in)  clang-tidy/tool/ClangTidy-
       Main.cpp:

	  // This anchor is used to force the linker to	link the MyModule.
	  extern volatile int MyModuleAnchorSource;
	  static int MyModuleAnchorDestination = MyModuleAnchorSource;

   Configuring Checks
       If  a  check  needs configuration options, it can access	check-specific
       options using the Options.get<Type>("SomeOption", DefaultValue) call in
       the check constructor. In this case the check should also override  the
       ClangTidyCheck::storeOptions method to make the options provided	by the
       check  discoverable. This method	lets clang-tidy	know which options the
       check implements	 and  what  the	 current  values  are  (e.g.  for  the
       -dump-config command line option).

	  class	MyCheck	: public ClangTidyCheck	{
	    const unsigned SomeOption1;
	    const std::string SomeOption2;

	  public:
	    MyCheck(StringRef Name, ClangTidyContext *Context)
	      :	ClangTidyCheck(Name, Context),
		SomeOption(Options.get("SomeOption1", -1U)),
		SomeOption(Options.get("SomeOption2", "some default")) {}

	    void storeOptions(ClangTidyOptions::OptionMap &Opts) override {
	      Options.store(Opts, "SomeOption1", SomeOption1);
	      Options.store(Opts, "SomeOption2", SomeOption2);
	    }
	    ...

       Assuming	 the  check is registered with the name	"my-check", the	option
       can then	be set in a .clang-tidy	file in	the following way:

	  CheckOptions:
	    - key: my-check.SomeOption1
	      value: 123
	    - key: my-check.SomeOption2
	      value: 'some other value'

       If you need to specify check options on a command line, you can use the
       inline YAML format:

	  $ clang-tidy -config="{CheckOptions: [{key: a, value:	b}, {key: x, value: y}]}" ...

   Testing Checks
       To run tests for	clang-tidy use the command:

	  $ ninja check-clang-tools

       clang-tidy checks can be	tested using either unit tests or  lit	tests.
       Unit  tests  may	 be  more convenient to	test complex replacements with
       strict checks. Lit tests	allow using partial text matching and  regular
       expressions  which  makes  them more suitable for writing compact tests
       for diagnostic messages.

       The check_clang_tidy.py script provides an easy way to test both	 diag-
       nostic  messages	 and fix-its. It filters out CHECK lines from the test
       file, runs clang-tidy and verifies messages and fixes with two separate
       FileCheck invocations: once with	FileCheck's directive  prefix  set  to
       CHECK-MESSAGES,	validating  the	diagnostic messages, and once with the
       directive prefix	set to CHECK-FIXES, running  against  the  fixed  code
       (i.e.,  the  code  after	generated fix-its are applied).	In particular,
       CHECK-FIXES: can	be used	 to  check  that  code	was  not  modified  by
       fix-its,	 by  checking  that it is present unchanged in the fixed code.
       The full	set of FileCheck directives  is	 available  (e.g.,  CHECK-MES-
       SAGES-SAME:,  CHECK-MESSAGES-NOT:),  though  typically  the basic CHECK
       forms (CHECK-MESSAGES and CHECK-FIXES) are  sufficient  for  clang-tidy
       tests. Note that	the FileCheck documentation mostly assumes the default
       prefix	(CHECK),   and	 hence	describes  the	directive  as  CHECK:,
       CHECK-SAME:, CHECK-NOT:,	etc.  Replace CHECK by either  CHECK-FIXES  or
       CHECK-MESSAGES for clang-tidy tests.

       An  additional  check  enabled  by  check_clang_tidy.py ensures that if
       CHECK-MESSAGES: is used in a file then every warning or error must have
       an associated CHECK in that file. Or, you can use CHECK-NOTES: instead,
       if you want to also ensure that all the notes are checked.

       To use the check_clang_tidy.py script, put a .cpp file with the	appro-
       priate  RUN  line in the	test/clang-tidy	directory. Use CHECK-MESSAGES:
       and CHECK-FIXES:	lines to write checks against diagnostic messages  and
       fixed code.

       It's advised to make the	checks as specific as possible to avoid	checks
       matching	 to  incorrect parts of	the input. Use [[@LINE+X]]/[[@LINE-X]]
       substitutions and distinct function and	variable  names	 in  the  test
       code.

       Here's  an  example of a	test using the check_clang_tidy.py script (the
       full source code	is at test/clang-tidy/google-readability-casting.cpp):

	  // RUN: %check_clang_tidy %s google-readability-casting %t

	  void f(int a)	{
	    int	b = (int)a;
	    // CHECK-MESSAGES: :[[@LINE-1]]:11:	warning: redundant cast	to the same type [google-readability-casting]
	    // CHECK-FIXES: int	b = a;
	  }

       To check	more than one scenario in the same test	file  use  -check-suf-
       fix=SUFFIX-NAME	on  check_clang_tidy.py	 command  line	or -check-suf-
       fixes=SUFFIX-NAME-1,SUFFIX-NAME-2,....	 With	-check-suffix[es]=SUF-
       FIX-NAME	 you  need  to replace your CHECK-* directives with CHECK-MES-
       SAGES-SUFFIX-NAME and CHECK-FIXES-SUFFIX-NAME.

       Here's an example:

	  // RUN: %check_clang_tidy -check-suffix=USING-A %s misc-unused-using-decls %t	-- -- -DUSING_A
	  // RUN: %check_clang_tidy -check-suffix=USING-B %s misc-unused-using-decls %t	-- -- -DUSING_B
	  // RUN: %check_clang_tidy %s misc-unused-using-decls %t
	  ...
	  // CHECK-MESSAGES-USING-A: :[[@LINE-8]]:10: warning: using decl 'A' {{.*}}
	  // CHECK-MESSAGES-USING-B: :[[@LINE-7]]:10: warning: using decl 'B' {{.*}}
	  // CHECK-MESSAGES: :[[@LINE-6]]:10: warning: using decl 'C' {{.*}}
	  // CHECK-FIXES-USING-A-NOT: using a::A;$
	  // CHECK-FIXES-USING-B-NOT: using a::B;$
	  // CHECK-FIXES-NOT: using a::C;$

       There are many dark corners in the C++ language,	and it may  be	diffi-
       cult  to	 make your check work perfectly	in all cases, especially if it
       issues fix-it hints. The	most frequent pitfalls	are  macros  and  tem-
       plates:

       1. code	written	in a macro body/template definition may	have a differ-
	  ent meaning depending	on the macro expansion/template	instantiation;

       2. multiple macro expansions/template instantiations may	result in  the
	  same	code  being  inspected	by the check multiple times (possibly,
	  with different meanings, see 1), and the same	warning	(or a slightly
	  different one) may be	issued by the check multiple times; clang-tidy
	  will deduplicate _identical_	warnings,  but	if  the	 warnings  are
	  slightly  different, all of them will	be shown to the	user (and used
	  for applying fixes, if any);

       3. making replacements to a macro body/template definition may be  fine
	  for  some macro expansions/template instantiations, but easily break
	  some other expansions/instantiations.

   Running clang-tidy on LLVM
       To test a check it's best to try	it out on a larger code	base. LLVM and
       Clang are the natural targets as	 you  already  have  the  source  code
       around.	The  most  convenient  way to run clang-tidy is	with a compile
       command database; CMake can automatically generate one, for a  descrip-
       tion  of	how to enable it see How To Setup Clang	Tooling	For LLVM. Once
       compile_commands.json is	in place and a working version	of  clang-tidy
       is   in	 PATH	the   entire   code   base   can   be	analyzed  with
       clang-tidy/tool/run-clang-tidy.py. The script executes clang-tidy  with
       the default set of checks on every translation unit in the compile com-
       mand  database  and  displays  the  resulting  warnings and errors. The
       script provides multiple	configuration flags.

        The default set of checks can be overridden using the	-checks	 argu-
	 ment,	taking	the  identical	format as clang-tidy does. For example
	 -checks=-*,modernize-use-override will	run the	modernize-use-override
	 check only.

        To restrict the files examined	you can	provide	one or more regex  ar-
	 guments  that	the file names are matched against.  run-clang-tidy.py
	 clang-tidy/.*Check\.cpp will only analyze clang-tidy checks.  It  may
	 also be necessary to restrict the header files	warnings are displayed
	 from  using  the -header-filter flag. It has the same behavior	as the
	 corresponding clang-tidy flag.

        To apply suggested fixes -fix can be  passed  as  an  argument.  This
	 gathers  all changes in a temporary directory and applies them. Pass-
	 ing -format will run clang-format over	changed	lines.

   On checks profiling
       clang-tidy can collect per-check	profiling info,	and output it for each
       processed source	file (translation unit).

       To enable profiling info	collection, use	the -enable-check-profile  ar-
       gument.	 The timings will be output to stderr as a table. Example out-
       put:

	  $ clang-tidy -enable-check-profile -checks=-*,readability-function-size source.cpp
	  ===-------------------------------------------------------------------------===
				    clang-tidy checks profiling
	  ===-------------------------------------------------------------------------===
	    Total Execution Time: 1.0282 seconds (1.0258 wall clock)

	     ---User Time---   --System	Time--	 --User+System--   ---Wall Time---  ---	Name ---
	     0.9136 (100.0%)   0.1146 (100.0%)	 1.0282	(100.0%)   1.0258 (100.0%)  readability-function-size
	     0.9136 (100.0%)   0.1146 (100.0%)	 1.0282	(100.0%)   1.0258 (100.0%)  Total

       It can also store that data as JSON files for further processing. Exam-
       ple output:

	  $ clang-tidy -enable-check-profile -store-check-profile=.  -checks=-*,readability-function-size source.cpp
	  $ # Note that	there won't be timings table printed to	the console.
	  $ ls /tmp/out/
	  20180516161318717446360-source.cpp.json
	  $ cat	20180516161318717446360-source.cpp.json
	  {
	  "file": "/path/to/source.cpp",
	  "timestamp": "2018-05-16 16:13:18.717446360",
	  "profile": {
	    "time.clang-tidy.readability-function-size.wall": 1.0421266555786133e+00,
	    "time.clang-tidy.readability-function-size.user": 9.2088400000005421e-01,
	    "time.clang-tidy.readability-function-size.sys": 1.2418899999999974e-01
	  }
	  }

       There is	only one argument that controls	profile	storage:

        -store-check-profile=<prefix>

	 By default reports are	printed	in tabulated format  to	 stderr.  When
	 this  option  is  passed, these per-TU	profiles are instead stored as
	 JSON.	If the prefix is not an	absolute path, it is considered	to  be
	 relative  to  the directory from where	you have run clang-tidy. All .
	 and ..	 patterns in the path are  collapsed,  and  symlinks  are  re-
	 solved.

	 Example:  Let's suppose you have a source file	named example.cpp, lo-
	 cated in the /source directory. Only the input	filename is used,  not
	 the  full  path to the	source file. Additionally, it is prefixed with
	 the current timestamp.

	  If you specify -store-check-profile=/tmp, then the profile will  be
	   saved to /tmp/<ISO8601-like timestamp>-example.cpp.json

	  If  you  run	 clang-tidy  from  within  /foo	directory, and specify
	   -store-check-profile=., then	the profile will  still	 be  saved  to
	   /foo/<ISO8601-like timestamp>-example.cpp.json

       clang-tidy  is  a clang-based C++ "linter" tool.	Its purpose is to pro-
       vide an extensible framework for	diagnosing and fixing typical program-
       ming errors, like style violations, interface misuse, or	bugs that  can
       be  deduced  via	 static	analysis. clang-tidy is	modular	and provides a
       convenient interface for	writing	new checks.

   Using clang-tidy
       clang-tidy is a LibTooling-based	tool, and it's easier to work with  if
       you  set	up a compile command database for your project (for an example
       of how to do this see How To Setup Tooling  For	LLVM).	You  can  also
       specify compilation options on the command line after --:

	  $ clang-tidy test.cpp	-- -Imy_project/include	-DMY_DEFINES ...

       clang-tidy  has	its  own checks	and can	also run Clang static analyzer
       checks. Each check has a	name and the checks to run can be chosen using
       the -checks= option, which specifies a comma-separated list of positive
       and negative (prefixed with -) globs. Positive  globs  add  subsets  of
       checks, negative	globs remove them. For example,

	  $ clang-tidy test.cpp	-checks=-*,clang-analyzer-*,-clang-analyzer-cplusplus*

       will  disable  all  default checks (-*) and enable all clang-analyzer-*
       checks except for clang-analyzer-cplusplus* ones.

       The -list-checks	option lists all the enabled checks. When used without
       -checks=, it shows checks enabled by default. Use -checks=* to see  all
       available  checks  or  with  any	 other	value of -checks= to see which
       checks are enabled by this value.

       There are currently the following groups	of checks:
		+--------------------+----------------------------+
		| Name prefix	     | Description		  |
		+--------------------+----------------------------+
		| abseil-	     | Checks related  to  Abseil |
		|		     | library.			  |
		+--------------------+----------------------------+
		| android-	     | Checks related to Android. |
		+--------------------+----------------------------+
		| boost-	     | Checks  related	to  Boost |
		|		     | library.			  |
		+--------------------+----------------------------+
		| bugprone-	     | Checks  that  target  bug- |
		|		     | prone code constructs.	  |
		+--------------------+----------------------------+
		| cert-		     | Checks related to CERT Se- |
		|		     | cure Coding Guidelines.	  |
		+--------------------+----------------------------+
		| clang-analyzer-    | Clang	Static	 Analyzer |
		|		     | checks.			  |
		+--------------------+----------------------------+
		| cppcoreguidelines- | Checks related to C++ Core |
		|		     | Guidelines.		  |
		+--------------------+----------------------------+
		| darwin-	     | Checks related  to  Darwin |
		|		     | coding conventions.	  |
		+--------------------+----------------------------+
		| fuchsia-	     | Checks  related to Fuchsia |
		|		     | coding conventions.	  |
		+--------------------+----------------------------+
		| google-	     | Checks related  to  Google |
		|		     | coding conventions.	  |
		+--------------------+----------------------------+
		| hicpp-	     | Checks related to High In- |
		|		     | tegrity	C++  Coding Stan- |
		|		     | dard.			  |
		+--------------------+----------------------------+
		| linuxkernel-	     | Checks  related	 to   the |
		|		     | Linux  Kernel  coding con- |
		|		     | ventions.		  |
		+--------------------+----------------------------+
		| llvm-		     | Checks related to the LLVM |
		|		     | coding conventions.	  |
		+--------------------+----------------------------+
		| llvmlibc-	     | Checks  related	 to   the |
		|		     | LLVM-libc   coding   stan- |
		|		     | dards.			  |
		+--------------------+----------------------------+
		| misc-		     | Checks that we didn't have |
		|		     | a better	category for.	  |
		+--------------------+----------------------------+
		| modernize-	     | Checks that advocate usage |
		|		     | of modern (currently "mod- |
		|		     | ern" means  "C++11")  lan- |
		|		     | guage constructs.	  |
		+--------------------+----------------------------+
		| mpi-		     | Checks	related	  to  MPI |
		|		     | (Message	 Passing   Inter- |
		|		     | face).			  |
		+--------------------+----------------------------+
		| objc-		     | Checks  related	to Objec- |
		|		     | tive-C coding conventions. |
		+--------------------+----------------------------+
		| openmp-	     | Checks related  to  OpenMP |
		|		     | API.			  |
		+--------------------+----------------------------+
		| performance-	     | Checks that target perfor- |
		|		     | mance-related issues.	  |
		+--------------------+----------------------------+
		| portability-	     | Checks  that target porta- |
		|		     | bility-related issues that |
		|		     | don't relate to	any  par- |
		|		     | ticular coding style.	  |
		+--------------------+----------------------------+
		| readability-	     | Checks  that  target read- |
		|		     | ability-related	   issues |
		|		     | that  don't  relate to any |
		|		     | particular coding style.	  |
		+--------------------+----------------------------+
		| zircon-	     | Checks related  to  Zircon |
		|		     | kernel coding conventions. |
		+--------------------+----------------------------+

       Clang  diagnostics  are	treated	in a similar way as check diagnostics.
       Clang diagnostics are displayed by clang-tidy and can be	 filtered  out
       using  -checks=	option.	 However,  the -checks=	option does not	affect
       compilation arguments, so it can	not turn on Clang warnings  which  are
       not  already turned on in build configuration. The -warnings-as-errors=
       option upgrades any warnings emitted under the -checks= flag to	errors
       (but it does not	enable any checks itself).

       Clang  diagnostics  have	 check	names starting with clang-diagnostic-.
       Diagnostics which  have	a  corresponding  warning  option,  are	 named
       clang-diagnostic-<warning-option>,  e.g.	 Clang	warning	 controlled by
       -Wliteral-conversion will be reported with  check  name	clang-diagnos-
       tic-literal-conversion.

       The  -fix flag instructs	clang-tidy to fix found	errors if supported by
       corresponding checks.

       An overview of all the command-line options:

	  $ clang-tidy --help
	  USAGE: clang-tidy [options] <source0>	[... <sourceN>]

	  OPTIONS:

	  Generic Options:

	    --help			   - Display available options (--help-hidden for more)
	    --help-list			   - Display list of available options (--help-list-hidden for more)
	    --version			   - Display the version of this program

	  clang-tidy options:

	    --checks=<string>		   -
					     Comma-separated list of globs with	optional '-'
					     prefix. Globs are processed in order of
					     appearance	in the list. Globs without '-'
					     prefix add	checks with matching names to the
					     set, globs	with the '-' prefix remove checks
					     with matching names from the set of enabled
					     checks. This option's value is appended to	the
					     value of the 'Checks' option in .clang-tidy
					     file, if any.
	    --config=<string>		   -
					     Specifies a configuration in YAML/JSON format:
					       -config="{Checks: '*',
							 CheckOptions: [{key: x,
									 value:	y}]}"
					     When the value is empty, clang-tidy will
					     attempt to	find a file named .clang-tidy for
					     each source file in its parent directories.
	    --dump-config		   -
					     Dumps configuration in the	YAML format to
					     stdout. This option can be	used along with	a
					     file name (and '--' if the	file is	outside	of a
					     project with configured compilation database).
					     The configuration used for	this file will be
					     printed.
					     Use along with -checks=* to include
					     configuration of all checks.
	    --enable-check-profile	   -
					     Enable per-check timing profiles, and print a
					     report to stderr.
	    --explain-config		   -
					     For each enabled check explains, where it is
					     enabled, i.e. in clang-tidy binary, command
					     line or a specific	configuration file.
	    --export-fixes=<filename>	   -
					     YAML file to store	suggested fixes	in. The
					     stored fixes can be applied to the	input source
					     code with clang-apply-replacements.
	    --extra-arg=<string>	   - Additional	argument to append to the compiler command line
					     Can be used several times.
	    --extra-arg-before=<string>	   - Additional	argument to prepend to the compiler command line
					     Can be used several times.
	    --fix			   -
					     Apply suggested fixes. Without -fix-errors
					     clang-tidy	will bail out if any compilation
					     errors were found.
	    --fix-errors		   -
					     Apply suggested fixes even	if compilation
					     errors were found.	If compiler errors have
					     attached fix-its, clang-tidy will apply them as
					     well.
	    --format-style=<string>	   -
					     Style for formatting code around applied fixes:
					       - 'none'	(default) turns	off formatting
					       - 'file'	(literally 'file', not a placeholder)
						 uses .clang-format file in the	closest	parent
						 directory
					       - '{ <json> }' specifies	options	inline,	e.g.
						 -format-style='{BasedOnStyle: llvm, IndentWidth: 8}'
					       - 'llvm', 'google', 'webkit', 'mozilla'
					     See clang-format documentation for	the up-to-date
					     information about formatting styles and options.
					     This option overrides the 'FormatStyle` option in
					     .clang-tidy file, if any.
	    --header-filter=<string>	   -
					     Regular expression	matching the names of the
					     headers to	output diagnostics from. Diagnostics
					     from the main file	of each	translation unit are
					     always displayed.
					     Can be used together with -line-filter.
					     This option overrides the 'HeaderFilterRegex'
					     option in .clang-tidy file, if any.
	    --line-filter=<string>	   -
					     List of files with	line ranges to filter the
					     warnings. Can be used together with
					     -header-filter. The format	of the list is a
					     JSON array	of objects:
					       [
						 {"name":"file1.cpp","lines":[[1,3],[5,7]]},
						 {"name":"file2.h"}
					       ]
	    --list-checks		   -
					     List all enabled checks and exit. Use with
					     -checks=* to list all available checks.
	    -p=<string>			   - Build path
	    --quiet			   -
					     Run clang-tidy in quiet mode. This	suppresses
					     printing statistics about ignored warnings	and
					     warnings treated as errors	if the respective
					     options are specified.
	    --store-check-profile=<prefix> -
					     By	default	reports	are printed in tabulated
					     format to stderr. When this option	is passed,
					     these per-TU profiles are instead stored as JSON.
	    --system-headers		   - Display the errors	from system headers.
	    --vfsoverlay=<filename>	   -
					     Overlay the virtual filesystem described by file
					     over the real file	system.
	    --warnings-as-errors=<string>  -
					     Upgrades warnings to errors. Same format as
					     '-checks'.
					     This option's value is appended to	the value of
					     the 'WarningsAsErrors' option in .clang-tidy
					     file, if any.

	  -p <build-path> is used to read a compile command database.

		  For example, it can be a CMake build directory in which a file named
		  compile_commands.json	exists (use -DCMAKE_EXPORT_COMPILE_COMMANDS=ON
		  CMake	option to get this output). When no build path is specified,
		  a search for compile_commands.json will be attempted through all
		  parent paths of the first input file . See:
		  https://clang.llvm.org/docs/HowToSetupToolingForLLVM.html for	an
		  example of setting up	Clang Tooling on a source tree.

	  <source0> ...	specify	the paths of source files. These paths are
		  looked up in the compile command database. If	the path of a file is
		  absolute, it needs to	point into CMake's source tree.	If the path is
		  relative, the	current	working	directory needs	to be in the CMake
		  source tree and the file must	be in a	subdirectory of	the current
		  working directory. "./" prefixes in the relative files will be
		  automatically	removed, but the rest of a relative path must be a
		  suffix of a path in the compile command database.

	  Configuration	files:
	    clang-tidy attempts	to read	configuration for each source file from	a
	    .clang-tidy	file located in	the closest parent directory of	the source
	    file. If InheritParentConfig is true in a config file, the configuration file
	    in the parent directory (if	any exists) will be taken and current config file
	    will be applied on top of the parent one. If any configuration options have
	    a corresponding command-line option, command-line option takes precedence.
	    The	effective configuration	can be inspected using -dump-config:

	      $	clang-tidy -dump-config
	      ---
	      Checks:		   '-*,some-check'
	      WarningsAsErrors:	   ''
	      HeaderFilterRegex:   ''
	      FormatStyle:	   none
	      InheritParentConfig: true
	      User:		   user
	      CheckOptions:
		- key:		   some-check.SomeOption
		  value:	   'some value'
	      ...

   Suppressing Undesired Diagnostics
       clang-tidy diagnostics are intended to call out code that does not  ad-
       here  to	 a  coding  standard, or is otherwise problematic in some way.
       However,	if the code is known to	be correct, it may be  useful  to  si-
       lence the warning.  Some	clang-tidy checks provide a check-specific way
       to  silence  the	 diagnostics, e.g.  bugprone-use-after-move can	be si-
       lenced by re-initializing the variable after it	has  been  moved  out,
       bugprone-string-integer-assignment  can	be  suppressed	by  explicitly
       casting the integer to char,  readability-implicit-bool-conversion  can
       also be suppressed by using explicit casts, etc.

       If  a  specific	suppression  mechanism	is not available for a certain
       warning,	or its use is not desired for some reason,  clang-tidy	has  a
       generic	mechanism  to  suppress	 diagnostics  using  NOLINT or NOLINT-
       NEXTLINE	comments.

       The NOLINT comment instructs clang-tidy to ignore warnings on the  same
       line (it	doesn't	apply to a function, a block of	code or	any other lan-
       guage construct,	it applies to the line of code it is on). If introduc-
       ing  the	 comment in the	same line would	change the formatting in unde-
       sired way, the NOLINTNEXTLINE comment  allows  to  suppress  clang-tidy
       warnings	on the next line.

       Both  comments  can  be	followed by an optional	list of	check names in
       parentheses (see	below for the formal syntax).

       For example:

	  class	Foo {
	    // Suppress	all the	diagnostics for	the line
	    Foo(int param); // NOLINT

	    // Consider	explaining the motivation to suppress the warning.
	    Foo(char param); //	NOLINT:	Allow implicit conversion from `char`, because <some valid reason>.

	    // Silence only the	specified checks for the line
	    Foo(double param); // NOLINT(google-explicit-constructor, google-runtime-int)

	    // Silence only the	specified diagnostics for the next line
	    // NOLINTNEXTLINE(google-explicit-constructor, google-runtime-int)
	    Foo(bool param);
	  };

       The formal syntax of NOLINT/NOLINTNEXTLINE is the following:

	  lint-comment:
	    lint-command
	    lint-command lint-args

	  lint-args:
	    ( check-name-list )

	  check-name-list:
	    check-name
	    check-name-list , check-name

	  lint-command:
	    NOLINT
	    NOLINTNEXTLINE

       Note that whitespaces between  NOLINT/NOLINTNEXTLINE  and  the  opening
       parenthesis  are	 not allowed (in this case the comment will be treated
       just as NOLINT/NOLINTNEXTLINE), whereas in check	names list (inside the
       parenthesis) whitespaces	can be used and	will be	ignored.

CLANG-INCLUDE-FIXER
   Contents
        Clang-Include-Fixer

	  Setup

	    Creating a	Symbol Index From a Compilation	Database

	    Integrate with Vim

	    Integrate with Emacs

	  How it Works

       One of the major	nuisances of C++ compared to other  languages  is  the
       manual  management  of  #include	 directives  in	 any  file.  clang-in-
       clude-fixer addresses one aspect	of this	problem	by providing an	 auto-
       mated  way  of  adding  #include	 directives for	missing	symbols	in one
       translation unit.

       While inserting	missing	 #include,  clang-include-fixer	 adds  missing
       namespace  qualifiers to	all instances of an unidentified symbol	if the
       symbol is missing some prefix namespace qualifiers.

   Setup
       To use clang-include-fixer two databases	are required. Both can be gen-
       erated with existing tools.

        Compilation database. Contains	the compiler commands  for  any	 given
	 file  in  a  project  and can be generated by CMake, see How To Setup
	 Tooling For LLVM.

        Symbol	index. Contains	all symbol information in a project to match a
	 given identifier to a header file.

       Ideally	both  databases	  (compile_commands.json   and	 find_all_sym-
       bols_db.yaml)  are  linked into the root	of the source tree they	corre-
       spond to. Then the clang-include-fixer can automatically	pick  them  up
       if  called with a source	file from that tree. Note that by default com-
       pile_commands.json as generated by CMake	does not include header	files,
       so only implementation files can	be handled by tools.

   Creating a Symbol Index From	a Compilation Database
       The include fixer contains find-all-symbols, a tool to create a	symbol
       database	 in  YAML  format  from	 a compilation database	by parsing all
       source files listed in it. The following	list of	commands shows how  to
       set  up	a  database for	LLVM, any project built	by CMake should	follow
       similar steps.

	  $ cd path/to/llvm-build
	  $ ninja find-all-symbols // build find-all-symbols tool.
	  $ ninja clang-include-fixer // build clang-include-fixer tool.
	  $ ls compile_commands.json # Make sure compile_commands.json exists.
	    compile_commands.json
	  $ path/to/llvm/source/clang-tools-extra/clang-include-fixer/find-all-symbols/tool/run-find-all-symbols.py
	    ...	wait as	clang indexes the code base ...
	  $ ln -s $PWD/find_all_symbols_db.yaml	path/to/llvm/source/ # Link database into the source tree.
	  $ ln -s $PWD/compile_commands.json path/to/llvm/source/ # Also link compilation database if it's not there already.
	  $ cd path/to/llvm/source
	  $ /path/to/clang-include-fixer -db=yaml path/to/file/with/missing/include.cpp
	    Added #include "foo.h"

   Integrate with Vim
       To run clang-include-fixer on a potentially unsaved buffer in Vim.  Add
       the following key binding to your .vimrc:

	  noremap <leader>cf :pyf path/to/llvm/source/clang-tools-extra/clang-include-fixer/tool/clang-include-fixer.py<cr>

       This  enables  clang-include-fixer  for	NORMAL and VISUAL mode.	Change
       <leader>cf to another binding if	you need clang-include-fixer on	a dif-
       ferent key. The <leader>	key is a reference to a	specific  key  defined
       by the mapleader	variable and is	bound to backslash by default.

       Make sure vim can find clang-include-fixer:

        Add the path to clang-include-fixer to	the PATH environment variable.

        Or   set   g:clang_include_fixer_path	 in   vimrc:  let  g:clang_in-
	 clude_fixer_path=path/to/clang-include-fixer

       You can customize the number of headers	being  shown  by  setting  let
       g:clang_include_fixer_maximum_suggested_headers=5

       Customized settings in .vimrc:

        let g:clang_include_fixer_path	= "clang-include-fixer"

	 Set clang-include-fixer binary	file path.

        let g:clang_include_fixer_maximum_suggested_headers = 3

	 Set the maximum number	of #includes to	show. Default is 3.

        let g:clang_include_fixer_increment_num = 5

	 Set  the increment number of #includes	to show	every time when	press-
	 ing m.	 Default is 5.

        let g:clang_include_fixer_jump_to_include = 0

	 Set to	1 if you want to jump to the new inserted #include  line.  De-
	 fault is 0.

        let g:clang_include_fixer_query_mode =	0

	 Set to	1 if you want to insert	#include for the symbol	under the cur-
	 sor.	Default	 is  0.	Compared to normal mode, this mode won't parse
	 the source file and only search the symbol from  database,  which  is
	 faster	than normal mode.

       See clang-include-fixer.py for more details.

   Integrate with Emacs
       To  run	clang-include-fixer  on	a potentially unsaved buffer in	Emacs.
       Ensure that Emacs finds clang-include-fixer.el by adding	the  directory
       containing  the	file  to  the  load-path  and  requiring the clang-in-
       clude-fixer in your .emacs:

	  (add-to-list 'load-path "path/to/llvm/source/clang-tools-extra/clang-include-fixer/tool/"
	  (require 'clang-include-fixer)

       Within Emacs the	tool can be invoked with  the  command	M-x  clang-in-
       clude-fixer.  This  will	insert the header that defines the first unde-
       fined symbol; if	there is more than one header that  would  define  the
       symbol, the user	is prompted to select one.

       To  include  the	 header	 that  defines	the  symbol  at	point, run M-x
       clang-include-fixer-at-point.

       Make sure Emacs can find	clang-include-fixer:

        Either	add the	parent directory of clang-include-fixer	 to  the  PATH
	 environment  variable,	 or  customize the Emacs user option clang-in-
	 clude-fixer-executable	to point to the	file name of the program.

   How it Works
       To get the most information out	of  Clang  at  parse  time,  clang-in-
       clude-fixer  runs  in tandem with the parse and receives	callbacks from
       Clang's semantic	analysis. In particular	it reuses the existing support
       for typo	corrections. Whenever Clang tries to correct a potential  typo
       it  emits a callback to the include fixer which then looks for a	corre-
       sponding	file. At this point rich lookup	information  is	 still	avail-
       able, which is not available in the AST at a later stage.

       The  identifier that should be typo corrected is	then sent to the data-
       base, if	a header file is returned it is	added as an include  directive
       at the top of the file.

       Currently  clang-include-fixer  only inserts a single include at	a time
       to avoid	getting	caught in follow-up errors. If multiple	#include addi-
       tions are desired the  program  can  be	rerun  until  a	 fix-point  is
       reached.

MODULARIZE USER'S MANUAL
   Modularize Usage
       modularize  [<modularize-options>] [<module-map>|<include-files-list>]*
       [<front-end-options>...]

       <modularize-options> is a place-holder for options specific to modular-
       ize, which are described	below in Modularize Command Line Options.

       <module-map> specifies the path of a file name for an  existing	module
       map.  The module	map must be well-formed	in terms of syntax. Modularize
       will extract the	header file names from the map.	 Only  normal  headers
       are checked, assuming headers marked "private", "textual", or "exclude"
       are  not	to be checked as a top-level include, assuming they either are
       included	by other headers which are checked, or they are	 not  suitable
       for modules.

       <include-files-list>  specifies the path	of a file name for a file con-
       taining the newline-separated list of headers to	check with respect  to
       each  other.  Lines  beginning  with  '#'  and empty lines are ignored.
       Header file names followed by a colon and  other	 space-separated  file
       names  will  include  those extra files as dependencies.	The file names
       can be relative or full paths, but must be on the same line. For	 exam-
       ple:

	  header1.h
	  header2.h
	  header3.h: header1.h header2.h

       Note  that  unless a -prefix (header path) option is specified, non-ab-
       solute file paths in the	header list  file  will	 be  relative  to  the
       header  list  file directory. Use -prefix to specify a different	direc-
       tory.

       <front-end-options> is a	place-holder for regular Clang front-end argu-
       ments, which must follow	the <include-files-list>.  Note	 that  by  de-
       fault,  modularize  assumes  .h files contain C++ source, so if you are
       using a different language, you might need to use a -x option  to  tell
       Clang that the header contains another language,	i.e.:  -x c

       Note  also  that	 because modularize does not use the clang driver, you
       will likely need	to pass	in additional compiler front-end arguments  to
       match those passed in by	default	by the driver.

   Modularize Command Line Options
       -prefix=<header-path>
	      Prepend  the given path to non-absolute file paths in the	header
	      list file.  By default, headers are assumed to  be  relative  to
	      the header list file directory. Use -prefix to specify a differ-
	      ent directory.

       -module-map-path=<module-map-path>
	      Generate	a  module map and output it to the given file. See the
	      description in Module Map	Generation.

       -problem-files-list=<problem-files-list-file-name>
	      For use only with	module map assistant. Input list of files that
	      have problems with respect to modules. These will	still  be  in-
	      cluded  in  the generated	module map, but	will be	marked as "ex-
	      cluded" headers.

       -root-module=<root-name>
	      Put modules generated by the -module-map-path option in  an  en-
	      closing  module  with  the  given	 name.	See the	description in
	      Module Map Generation.

       -block-check-header-list-only
	      Limit  the  #include-inside-extern-or-namespace-block  check  to
	      only  those  headers explicitly listed in	the header list.  This
	      is a work-around for avoiding error  messages  for  private  in-
	      cludes that purposefully get included inside blocks.

       -no-coverage-check
	      Don't do the coverage check for a	module map.

       -coverage-check-only
	      Only do the coverage check for a module map.

       -display-file-lists
	      Display  lists of	good files (no compile errors),	problem	files,
	      and a combined list with problem files preceded by a '#'.	  This
	      can be used to quickly determine which files have	problems.  The
	      latter combined list might be useful in starting to modularize a
	      set  of  headers.	You can	start with a full list of headers, use
	      -display-file-lists option, and then use the  combined  list  as
	      your  intermediate  list,	 uncommenting-out  headers  as you fix
	      them.

       modularize is a standalone tool that checks whether a  set  of  headers
       provides	 the consistent	definitions required to	use modules. For exam-
       ple, it detects whether the same	entity (say, a NULL  macro  or	size_t
       typedef)	 is  defined  in multiple headers or whether a header produces
       different definitions under different circumstances.  These  conditions
       cause  modules  built  from the headers to behave poorly, and should be
       fixed before introducing	a module map.

       modularize also has an assistant	mode option for	 generating  a	module
       map  file  based	 on  the provided header list. The generated file is a
       functional module map that can be used as a starting point for  a  mod-
       ule.map file.

   Getting Started
       To build	from source:

       1. Read Getting Started with the	LLVM System and	Clang Tools Documenta-
	  tion	for  information on getting sources for	LLVM, Clang, and Clang
	  Extra	Tools.

       2. Getting Started with the LLVM	System and Building  LLVM  with	 CMake
	  give	directions for how to build. With sources all checked out into
	  the right place the LLVM build will  build  Clang  Extra  Tools  and
	  their	dependencies automatically.

	   If	using  CMake,  you can also use	the modularize target to build
	    just the modularize	tool and its dependencies.

       Before continuing, take a look at Modularize Usage to see how to	invoke
       modularize.

   What	Modularize Checks
       Modularize will check for the following:

        Duplicate global type and variable definitions

        Duplicate macro definitions

        Macro instances, 'defined(macro)', or	#if,  #elif,  #ifdef,  #ifndef
	 conditions that evaluate differently in a header

        #include  directives  inside 'extern "C/C++" {}' or 'namespace	(name)
	 {}' blocks

        Module	map header coverage completeness (in the case of a module  map
	 input only)

       Modularize  will	 do  normal C/C++ parsing, reporting normal errors and
       warnings, but will also report special error messages like the  follow-
       ing:

	  error: '(symbol)' defined at multiple	locations:
	     (file):(row):(column)
	     (file):(row):(column)

	  error: header	'(file)' has different contents	depending on how it was	included

       The latter might	be followed by messages	like the following:

	  note:	'(symbol)' in (file) at	(row):(column) not always provided

       Checks  will also be performed for macro	expansions, defined(macro) ex-
       pressions, and preprocessor conditional directives that evaluate	incon-
       sistently, and can produce error	messages like the following:

	   (...)/SubHeader.h:11:5:
	  #if SYMBOL ==	1
	      ^
	  error: Macro instance	'SYMBOL' has different values in this header,
		 depending on how it was included.
	    'SYMBOL' expanded to: '1' with respect to these inclusion paths:
	      (...)/Header1.h
		(...)/SubHeader.h
	  (...)/SubHeader.h:3:9:
	  #define SYMBOL 1
		  ^
	  Macro	defined	here.
	    'SYMBOL' expanded to: '2' with respect to these inclusion paths:
	      (...)/Header2.h
		  (...)/SubHeader.h
	  (...)/SubHeader.h:7:9:
	  #define SYMBOL 2
		  ^
	  Macro	defined	here.

       Checks will also	be performed for '#include' directives that are	nested
       inside 'extern "C/C++" {}' or 'namespace	(name)	{}'  blocks,  and  can
       produce error message like the following:

	  IncludeInExtern.h:2:3:
	  #include "Empty.h"
	  ^
	  error: Include directive within extern "C" {}.
	  IncludeInExtern.h:1:1:
	  extern "C" {
	  ^
	  The "extern "C" {}" block is here.

   Module Map Coverage Check
       The  coverage check uses	the Clang library to read and parse the	module
       map file. Starting at the module	map file directory, or	just  the  in-
       clude  paths,  if specified, it will collect the	names of all the files
       it considers headers (no	extension, .h, or .inc--if you need more, mod-
       ify the isHeader	function). It then compares the	headers	against	 those
       referenced  in  the  module map,	either explicitly named, or implicitly
       named via an umbrella directory or umbrella file, as parsed by the Mod-
       uleMap object.  If headers are found which are not referenced  or  cov-
       ered  by	 an  umbrella directory	or file, warning messages will be pro-
       duced, and this program will return an error code of 1. If no  problems
       are found, an error code	of 0 is	returned.

       Note  that  in the case of umbrella headers, this tool invokes the com-
       piler to	preprocess the file, and uses a	callback to collect the	header
       files included by the umbrella header or	any of its nested includes. If
       any front end options are needed	for these compiler invocations,	 these
       can be included on the command line after the module map	file argument.

       Warning message have the	form:
	  warning: module.modulemap does not account for file: Level3A.h

       Note  that  for the case	of the module map referencing a	file that does
       not exist, the module map parser	in Clang will (at  the	time  of  this
       writing)	display	an error message.

       To  limit  the  checks  modularize does to just the module map coverage
       check, use the -coverage-check-only option.

       For example:

	  modularize -coverage-check-only module.modulemap

   Module Map Generation
       If you specify the -module-map-path=<module map file>, modularize  will
       output  a  module map based on the input	header list.  A	module will be
       created for each	header.	Also, if the header in the header  list	 is  a
       partial path, a nested module hierarchy will be created in which	a mod-
       ule will	be created for each subdirectory component in the header path,
       with  the  header  itself represented by	the innermost module. If other
       headers use the same subdirectories, they will  be  enclosed  in	 these
       same modules also.

       For example, for	the header list:

	  SomeTypes.h
	  SomeDecls.h
	  SubModule1/Header1.h
	  SubModule1/Header2.h
	  SubModule2/Header3.h
	  SubModule2/Header4.h
	  SubModule2.h

       The following module map	will be	generated:

	  // Output/NoProblemsAssistant.txt
	  // Generated by: modularize -module-map-path=Output/NoProblemsAssistant.txt \
	       -root-module=Root NoProblemsAssistant.modularize

	  module SomeTypes {
	    header "SomeTypes.h"
	    export *
	  }
	  module SomeDecls {
	    header "SomeDecls.h"
	    export *
	  }
	  module SubModule1 {
	    module Header1 {
	      header "SubModule1/Header1.h"
	      export *
	    }
	    module Header2 {
	      header "SubModule1/Header2.h"
	      export *
	    }
	  }
	  module SubModule2 {
	    module Header3 {
	      header "SubModule2/Header3.h"
	      export *
	    }
	    module Header4 {
	      header "SubModule2/Header4.h"
	      export *
	    }
	    header "SubModule2.h"
	    export *
	  }

       An optional -root-module=<root-name> option can be used to cause	a root
       module to be created which encloses all the modules.

       An  optional -problem-files-list=<problem-file-name> can	be used	to in-
       put a list of files to be excluded, perhaps  as	a  temporary  stop-gap
       measure until problem headers can be fixed.

       For example, with the same header list from above:

	  // Output/NoProblemsAssistant.txt
	  // Generated by: modularize -module-map-path=Output/NoProblemsAssistant.txt \
	       -root-module=Root NoProblemsAssistant.modularize

	  module Root {
	    module SomeTypes {
	      header "SomeTypes.h"
	      export *
	    }
	    module SomeDecls {
	      header "SomeDecls.h"
	      export *
	    }
	    module SubModule1 {
	      module Header1 {
		header "SubModule1/Header1.h"
		export *
	      }
	      module Header2 {
		header "SubModule1/Header2.h"
		export *
	      }
	    }
	    module SubModule2 {
	      module Header3 {
		header "SubModule2/Header3.h"
		export *
	      }
	      module Header4 {
		header "SubModule2/Header4.h"
		export *
	      }
	      header "SubModule2.h"
	      export *
	    }
	  }

       Note  that  headers  with dependents will be ignored with a warning, as
       the Clang module	mechanism doesn't support headers the  rely  on	 other
       headers to be included first.

       The module map format defines some keywords which can't be used in mod-
       ule names. If a header has one of these names, an underscore ('_') will
       be  prepended to	the name. For example, if the header name is header.h,
       because header is a keyword, the	module name will be  _header.	For  a
       list of the module map keywords,	please see: Lexical structure

PP-TRACE USER'S	MANUAL
       pp-trace	 is  a standalone tool that traces preprocessor	activity. It's
       also used as a test of Clang's PPCallbacks interface.  It runs a	 given
       source  file through the	Clang preprocessor, displaying selected	infor-
       mation from callback functions overridden in a PPCallbacks  derivation.
       The output is in	a high-level YAML format, described in pp-trace	Output
       Format.

   pp-trace Usage
   Command Line	Format
       pp-trace	[<pp-trace-options>] <source-file> [-- <front-end-options>]

       <pp-trace-options>  is a	place-holder for options specific to pp-trace,
       which are described below in Command Line Options.

       <source-file> specifies the source file to run through  the  preproces-
       sor.

       <front-end-options>  is	a  place-holder	for regular Clang Compiler Op-
       tions, which must follow	the <source-file>.

   Command Line	Options
       -callbacks <comma-separated-globs>
	      This option specifies a comma-separated list of globs describing
	      the list of callbacks that should	be traced. Globs are processed
	      in order of appearance.  Positive	globs add matched callbacks to
	      the set, netative	globs  (those  with  the  '-'  prefix)	remove
	      callacks from the	set.

	      	FileChanged

	      	FileSkipped

	      	FileNotFound

	      	InclusionDirective

	      	moduleImport

	      	EndOfMainFile

	      	Ident

	      	PragmaDirective

	      	PragmaComment

	      	PragmaDetectMismatch

	      	PragmaDebug

	      	PragmaMessage

	      	PragmaDiagnosticPush

	      	PragmaDiagnosticPop

	      	PragmaDiagnostic

	      	PragmaOpenCLExtension

	      	PragmaWarning

	      	PragmaWarningPush

	      	PragmaWarningPop

	      	MacroExpands

	      	MacroDefined

	      	MacroUndefined

	      	Defined

	      	SourceRangeSkipped

	      	If

	      	Elif

	      	Ifdef

	      	Ifndef

	      	Else

	      	Endif

       -output <output-file>
	      By  default,  pp-trace  outputs the trace	information to stdout.
	      Use this option to output	the trace information to a file.

   pp-trace Output Format
       The pp-trace output is formatted	as  YAML.  See	https://yaml.org/  for
       general	YAML  information.  It's arranged as a sequence	of information
       about the callback call,	including the callback name and	 argument  in-
       formation, for example::

	  ---
	  - Callback: Name
	    Argument1: Value1
	    Argument2: Value2
	  (etc.)
	  ...

       With real data::

	  ---
	  - Callback: FileChanged
	    Loc: "c:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-include.cpp:1:1"
	    Reason: EnterFile
	    FileType: C_User
	    PrevFID: (invalid)
	    (etc.)
	  - Callback: FileChanged
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-include.cpp:5:1"
	    Reason: ExitFile
	    FileType: C_User
	    PrevFID: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/Input/Level1B.h"
	  - Callback: EndOfMainFile
	  ...

       In  all	but  one case (MacroDirective) the "Argument" scalars have the
       same name as the	argument in  the  corresponding	 PPCallbacks  callback
       function.

   Callback Details
       The  following sections describe	the purpose and	output format for each
       callback.

       Click on	the callback name in the section heading to  see  the  Doxygen
       documentation for the callback.

       The  argument descriptions table	describes the callback argument	infor-
       mation displayed.

       The Argument Name field in most (but not	all) cases is the same name as
       the callback function parameter.

       The Argument Value Syntax field describes the values that will be  dis-
       played  for  the	 argument value. It uses an ad hoc representation that
       mixes literal and symbolic representations. Enumeration member  symbols
       are  shown as the actual	enum member in a (member1|member2|...) form. A
       name in parentheses can either represent	a place	 holder	 for  the  de-
       scribed	value,	or confusingly,	it might be a literal, such as (null),
       for a null pointer.  Locations are shown	as quoted only to  avoid  con-
       fusing the documentation	generator.

       The  Clang C++ Type field is the	type from the callback function	decla-
       ration.

       The description describes the argument or what is displayed for it.

       Note that in some cases,	such as	when a structure pointer is  an	 argu-
       ment  value, only some key member or members are	shown to represent the
       value, instead of trying	to display all members of the structure.

   FileChanged Callback
       FileChanged is called when the preprocessor enters  or  exits  a	 file,
       both  the top level file	being compiled,	as well	as any #include	direc-
       tives. It will also be called as	a result of a system header pragma  or
       in internal renaming of a file.

       Argument	descriptions:
   +---------------+-----------------------+------------------+------------------+
   | Argument Name | Argument	Value	   | Clang C++ Type   |	Description	 |
   |		   | Syntax		   |		      |			 |
   +---------------+-----------------------+------------------+------------------+
   | Loc	   | "(file):(line):(col)" | SourceLocation   |	The location  of |
   |		   |			   |		      |	the directive.	 |
   +---------------+-----------------------+------------------+------------------+
   | Reason	   | (EnterFile|Exit-	   | PPCall-	      |	Reason	     for |
   |		   | File|SystemHeader-	   | backs::FileChan- |	change.		 |
   |		   | Pragma|RenameFile)	   | geReason	      |			 |
   +---------------+-----------------------+------------------+------------------+
   | FileType	   | (C_User|C_Sys-	   | SrcMgr::Charac-  |	Include	type.	 |
   |		   | tem|C_ExternCSystem)  | teristicKind     |			 |
   +---------------+-----------------------+------------------+------------------+
   | PrevFID	   | ((file)|(invalid))	   | FileID	      |	Previous   file, |
   |		   |			   |		      |	if any.		 |
   +---------------+-----------------------+------------------+------------------+

       Example::

	  - Callback: FileChanged
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-include.cpp:1:1"
	    Reason: EnterFile
	    FileType: C_User
	    PrevFID: (invalid)

   FileSkipped Callback
       FileSkipped  is	called	when a source file is skipped as the result of
       header guard optimization.

       Argument	descriptions:
      +---------------+------------------+-----------------+------------------+
      |	Argument Name |	Argument   Value | Clang C++ Type  | Description      |
      |		      |	Syntax		 |		   |		      |
      +---------------+------------------+-----------------+------------------+
      |	ParentFile    |	("(file)"     or | const FileEntry | The  file	 that |
      |		      |	(null))		 |		   | #included	  the |
      |		      |			 |		   | skipped file.    |
      +---------------+------------------+-----------------+------------------+
      |	FilenameTok   |	(token)		 | const Token	   | The   token   in |
      |		      |			 |		   | ParentFile	 that |
      |		      |			 |		   | indicates	  the |
      |		      |			 |		   | skipped file.    |
      +---------------+------------------+-----------------+------------------+
      |	FileType      |	(C_User|C_Sys-	 | SrcMgr::Charac- | The file type.   |
      |		      |	tem|C_ExternC-	 | teristicKind	   |		      |
      |		      |	System)		 |		   |		      |
      +---------------+------------------+-----------------+------------------+

       Example::

	  - Callback: FileSkipped
	    ParentFile:	"/path/filename.h"
	    FilenameTok: "filename.h"
	    FileType: C_User

   FileNotFound	Callback
       FileNotFound  is	 called	 when  an  inclusion  directive	 results  in a
       file-not-found error.

       Argument	descriptions:
      +---------------+------------------+----------------+------------------+
      |	Argument Name |	Argument   Value | Clang C++ Type | Description	     |
      |		      |	Syntax		 |		  |		     |
      +---------------+------------------+----------------+------------------+
      |	FileName      |	"(file)"	 | StringRef	  | The	 name of the |
      |		      |			 |		  | file  being	 in- |
      |		      |			 |		  | cluded, as writ- |
      |		      |			 |		  | ten	   in	 the |
      |		      |			 |		  | source code.     |
      +---------------+------------------+----------------+------------------+
      |	RecoveryPath  |	(path)		 | SmallVec-	  | If	this  client |
      |		      |			 | torImpl<char>  | indicates	that |
      |		      |			 |		  | it	can  recover |
      |		      |			 |		  | from  this miss- |
      |		      |			 |		  | ing	 file,	 the |
      |		      |			 |		  | client    should |
      |		      |			 |		  | set	this  as  an |
      |		      |			 |		  | additional	     |
      |		      |			 |		  | header    search |
      |		      |			 |		  | patch.	     |
      +---------------+------------------+----------------+------------------+

       Example::

	  - Callback: FileNotFound
	    FileName: "/path/filename.h"
	    RecoveryPath:

   InclusionDirective Callback
       InclusionDirective is called when an inclusion directive	 of  any  kind
       (#include</code>,  #import</code>, etc.)	has been processed, regardless
       of whether the inclusion	will actually result in	an inclusion.

       Argument	descriptions:
   +---------------+-----------------------+-----------------+------------------+
   | Argument Name | Argument	Value	   | Clang C++ Type  | Description	|
   |		   | Syntax		   |		     |			|
   +---------------+-----------------------+-----------------+------------------+
   | HashLoc	   | "(file):(line):(col)" | SourceLocation  | The  location of	|
   |		   |			   |		     | the   '#'   that	|
   |		   |			   |		     | starts  the  in-	|
   |		   |			   |		     | clusion	 direc-	|
   |		   |			   |		     | tive.		|
   +---------------+-----------------------+-----------------+------------------+
   | IncludeTok	   | (token)		   | const Token     | The  token  that	|
   |		   |			   |		     | indicates    the	|
   |		   |			   |		     | kind  of	 inclu-	|
   |		   |			   |		     | sion  directive,	|
   |		   |			   |		     | e.g.,  'include'	|
   |		   |			   |		     | or 'import'.	|
   +---------------+-----------------------+-----------------+------------------+
   | FileName	   | "(file)"		   | StringRef	     | The name	of  the	|
   |		   |			   |		     | file  being  in-	|
   |		   |			   |		     | cluded, as writ-	|
   |		   |			   |		     | ten    in    the	|
   |		   |			   |		     | source code.	|
   +---------------+-----------------------+-----------------+------------------+
   | IsAngled	   | (true|false)	   | bool	     | Whether the file	|
   |		   |			   |		     | name   was   en-	|
   |		   |			   |		     | closed in  angle	|
   |		   |			   |		     | brackets; other-	|
   |		   |			   |		     | wise, it	was en-	|
   |		   |			   |		     | closed	     in	|
   |		   |			   |		     | quotes.		|
   +---------------+-----------------------+-----------------+------------------+
   | FilenameRange | "(file)"		   | CharSourceRange | The    character	|
   |		   |			   |		     | range   of   the	|
   |		   |			   |		     | quotes or  angle	|
   |		   |			   |		     | brackets	for the	|
   |		   |			   |		     | written	   file	|
   |		   |			   |		     | name.		|
   +---------------+-----------------------+-----------------+------------------+
   | File	   | "(file)"		   | const FileEntry | The actual  file	|
   |		   |			   |		     | that  may be in-	|
   |		   |			   |		     | cluded  by  this	|
   |		   |			   |		     | inclusion direc-	|
   |		   |			   |		     | tive.		|
   +---------------+-----------------------+-----------------+------------------+
   | SearchPath	   | "(path)"		   | StringRef	     | Contains	    the	|
   |		   |			   |		     | search	   path	|
   |		   |			   |		     | which  was  used	|
   |		   |			   |		     | to find the file	|
   |		   |			   |		     | in the file sys-	|
   |		   |			   |		     | tem.		|
   +---------------+-----------------------+-----------------+------------------+
   | RelativePath  | "(path)"		   | StringRef	     | The  path  rela-	|
   |		   |			   |		     | tive  to	Search-	|
   |		   |			   |		     | Path,  at  which	|
   |		   |			   |		     | the include file	|
   |		   |			   |		     | was found.	|
   +---------------+-----------------------+-----------------+------------------+
   | Imported	   | ((module		   | const Module    | The	module,	|
   |		   | name)|(null))	   |		     | whenever	an  in-	|
   |		   |			   |		     | clusion	 direc-	|
   |		   |			   |		     | tive  was  auto-	|
   |		   |			   |		     | matically turned	|
   |		   |			   |		     | into   a	 module	|
   |		   |			   |		     | import  or  null	|
   |		   |			   |		     | otherwise.	|
   +---------------+-----------------------+-----------------+------------------+

       Example::

	  - Callback: InclusionDirective
	    IncludeTok:	include
	    FileName: "Input/Level1B.h"
	    IsAngled: false
	    FilenameRange: "Input/Level1B.h"
	    File: "D:/Clang/llvmnewmod/clang-tools-extra/test/pp-trace/Input/Level1B.h"
	    SearchPath:	"D:/Clang/llvmnewmod/clang-tools-extra/test/pp-trace"
	    RelativePath: "Input/Level1B.h"
	    Imported: (null)

   moduleImport	Callback
       moduleImport is called when there was an	explicit module-import syntax.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | ImportLoc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | import directive	|
    |		    |			    |		     | token.		|
    +---------------+-----------------------+----------------+------------------+
    | Path	    | "(path)"		    | ModuleIdPath   | The  identifiers	|
    |		    |			    |		     | (and their loca-	|
    |		    |			    |		     | tions)  of   the	|
    |		    |			    |		     | module "path".	|
    +---------------+-----------------------+----------------+------------------+
    | Imported	    | ((module		    | const Module   | The     imported	|
    |		    | name)|(null))	    |		     | module;	can  be	|
    |		    |			    |		     | null  if	import-	|
    |		    |			    |		     | ing failed.	|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: moduleImport
	    ImportLoc: "d:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-modules.cpp:4:2"
	    Path: [{Name: Level1B, Loc:	"d:/Clang/llvmnewmod/clang-tools-extra/test/pp-trace/pp-trace-modules.cpp:4:9"}, {Name:	Level2B, Loc: "d:/Clang/llvmnewmod/clang-tools-extra/test/pp-trace/pp-trace-modules.cpp:4:17"}]
	    Imported: Level2B

   EndOfMainFile Callback
       EndOfMainFile is	called when the	end of the main	file is	reached.

       Argument	descriptions:
	+----------------+------------------+----------------+-------------+
	| Argument Name	 | Argument   Value | Clang C++	Type | Description |
	|		 | Syntax	    |		     |		   |
	+----------------+------------------+----------------+-------------+
	| (no arguments) |		    |		     |		   |
	+----------------+------------------+----------------+-------------+

       Example::

	  - Callback: EndOfMainFile

   Ident Callback
       Ident is	called when a #ident or	#sccs directive	is read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | str	    | (name)		    | const	     | The  text of the	|
    |		    |			    | std::string    | directive.	|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: Ident
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-ident.cpp:3:1"
	    str: "$Id$"

   PragmaDirective Callback
       PragmaDirective is called when start reading any	pragma directive.

       Argument	descriptions:
+---------------+----------------------------------+-----------------+------------------+
| Argument Name	| Argument   Value		   | Clang C++ Type  | Description	|
|		| Syntax			   |		     |			|
+---------------+----------------------------------+-----------------+------------------+
| Loc		| "(file):(line):(col)"		   | SourceLocation  | The  location of	|
|		|				   |		     | the directive.	|
+---------------+----------------------------------+-----------------+------------------+
| Introducer	| (PIK_Hash-			   | PragmaIntroduc- | The type	of  the	|
|		| Pragma|PIK__Pragma|PIK___pragma) | erKind	     | pragma	 direc-	|
|		|				   |		     | tive.		|
+---------------+----------------------------------+-----------------+------------------+

       Example::

	  - Callback: PragmaDirective
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Introducer:	PIK_HashPragma

   PragmaComment Callback
       PragmaComment is	called when a #pragma comment directive	is read.

       Argument	descriptions:
   +---------------+-----------------------+------------------+------------------+
   | Argument Name | Argument	Value	   | Clang C++ Type   |	Description	 |
   |		   | Syntax		   |		      |			 |
   +---------------+-----------------------+------------------+------------------+
   | Loc	   | "(file):(line):(col)" | SourceLocation   |	The  location of |
   |		   |			   |		      |	the directive.	 |
   +---------------+-----------------------+------------------+------------------+
   | Kind	   | ((name)|(null))	   | const    Identi- |	The comment kind |
   |		   |			   | fierInfo	      |	symbol.		 |
   +---------------+-----------------------+------------------+------------------+
   | Str	   | (message directive)   | const	      |	The comment mes- |
   |		   |			   | std::string      |	sage directive.	 |
   +---------------+-----------------------+------------------+------------------+

       Example::

	  - Callback: PragmaComment
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Kind: library
	    Str: kernel32.lib

   PragmaDetectMismatch	Callback
       PragmaDetectMismatch is called when a #pragma detect_mismatch directive
       is read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | Name	    | "(name)"		    | const	     | The name.	|
    |		    |			    | std::string    |			|
    +---------------+-----------------------+----------------+------------------+
    | Value	    | (string)		    | const	     | The value.	|
    |		    |			    | std::string    |			|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaDetectMismatch
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Name: name
	    Value: value

   PragmaDebug Callback
       PragmaDebug is called when a #pragma clang __debug directive is read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | DebugType	    | (string)		    | StringRef	     | Indicates   type	|
    |		    |			    |		     | of  debug   mes-	|
    |		    |			    |		     | sage.		|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaDebug
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    DebugType: warning

   PragmaMessage Callback
       PragmaMessage is	called when a #pragma message directive	is read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | Namespace	    | (name)		    | StringRef	     | The namespace of	|
    |		    |			    |		     | the  message di-	|
    |		    |			    |		     | rective.		|
    +---------------+-----------------------+----------------+------------------+
    | Kind	    | (PMK_Mes-		    | PPCall-	     | The type	of  the	|
    |		    | sage|PMK_Warn-	    | backs::Prag-   | message	 direc-	|
    |		    | ing|PMK_Error)	    | maMessageKind  | tive.		|
    +---------------+-----------------------+----------------+------------------+
    | Str	    | (string)		    | StringRef	     | The text	of  the	|
    |		    |			    |		     | message	 direc-	|
    |		    |			    |		     | tive.		|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaMessage
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Namespace: "GCC"
	    Kind: PMK_Message
	    Str: The message text.

   PragmaDiagnosticPush	Callback
       PragmaDiagnosticPush is called when a #pragma gcc diagnostic  push  di-
       rective is read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | Namespace	    | (name)		    | StringRef	     | Namespace name.	|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaDiagnosticPush
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Namespace: "GCC"

   PragmaDiagnosticPop Callback
       PragmaDiagnosticPop  is called when a #pragma gcc diagnostic pop	direc-
       tive is read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The  location of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | Namespace	    | (name)		    | StringRef	     | Namespace name.	|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaDiagnosticPop
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Namespace: "GCC"

   PragmaDiagnostic Callback
       PragmaDiagnostic	is called when a #pragma gcc diagnostic	 directive  is
       read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | Namespace	    | (name)		    | StringRef	     | Namespace name.	|
    +---------------+-----------------------+----------------+------------------+
    | mapping	    | (0|MAP_IG-	    | diag::Severity | Mapping type.	|
    |		    | NORE|MAP_WARN-	    |		     |			|
    |		    | ING|MAP_ERROR|MAP_FA- |		     |			|
    |		    | TAL)		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Str	    | (string)		    | StringRef	     | Warning/error	|
    |		    |			    |		     | name.		|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaDiagnostic
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Namespace: "GCC"
	    mapping: MAP_WARNING
	    Str: WarningName

   PragmaOpenCLExtension Callback
       PragmaOpenCLExtension  is  called  when OpenCL extension	is either dis-
       abled or	enabled	with a pragma.

       Argument	descriptions:
   +---------------+-----------------------+------------------+------------------+
   | Argument Name | Argument	Value	   | Clang C++ Type   |	Description	 |
   |		   | Syntax		   |		      |			 |
   +---------------+-----------------------+------------------+------------------+
   | NameLoc	   | "(file):(line):(col)" | SourceLocation   |	The  location of |
   |		   |			   |		      |	the name.	 |
   +---------------+-----------------------+------------------+------------------+
   | Name	   | (name)		   | const    Identi- |	Name symbol.	 |
   |		   |			   | fierInfo	      |			 |
   +---------------+-----------------------+------------------+------------------+
   | StateLoc	   | "(file):(line):(col)" | SourceLocation   |	The  location of |
   |		   |			   |		      |	the state.	 |
   +---------------+-----------------------+------------------+------------------+
   | State	   | (1|0)		   | unsigned	      |	Enabled/disabled |
   |		   |			   |		      |	state.		 |
   +---------------+-----------------------+------------------+------------------+

       Example::

	  - Callback: PragmaOpenCLExtension
	    NameLoc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:10"
	    Name: Name
	    StateLoc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:18"
	    State: 1

   PragmaWarning Callback
       PragmaWarning is	called when a #pragma warning directive	is read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The  location of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | WarningSpec   | (string)		    | StringRef	     | The	warning	|
    |		    |			    |		     | specifier.	|
    +---------------+-----------------------+----------------+------------------+
    | Ids	    | [(number)[, ...]]	    | ArrayRef<int>  | The warning num-	|
    |		    |			    |		     | bers.		|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaWarning
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    WarningSpec: disable
	    Ids: 1,2,3

   PragmaWarningPush Callback
       PragmaWarningPush  is  called when a #pragma warning(push) directive is
       read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The  location of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+
    | Level	    | (number)		    | int	     | Warning level.	|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaWarningPush
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"
	    Level: 1

   PragmaWarningPop Callback
       PragmaWarningPop	is called when a  #pragma  warning(pop)	 directive  is
       read.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the directive.	|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: PragmaWarningPop
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-pragma.cpp:3:1"

   MacroExpands	Callback
       MacroExpands  is	 called	 when  ::HandleMacroExpandedIdentifier	when a
       macro invocation	is found.

       Argument	descriptions:
 +----------------+-------------------------+------------------+------------------+
 | Argument Name  | Argument   Value	    | Clang C++	Type   | Description	  |
 |		  | Syntax		    |		       |		  |
 +----------------+-------------------------+------------------+------------------+
 | MacroNameTok	  | (token)		    | const Token      | The  macro  name |
 |		  |			    |		       | token.		  |
 +----------------+-------------------------+------------------+------------------+
 | MacroDirective | (MD_De-		    | const   MacroDi- | The	kind   of |
 |		  | fine|MD_Unde-	    | rective	       | macro	directive |
 |		  | fine|MD_Visibil-	    |		       | from	      the |
 |		  | ity)		    |		       | MacroDirective	  |
 |		  |			    |		       | structure.	  |
 +----------------+-------------------------+------------------+------------------+
 | Range	  | ["(file):(line):(col)", | SourceRange      | The source range |
 |		  | "(file):(line):(col)"]  |		       | for  the  expan- |
 |		  |			    |		       | sion.		  |
 +----------------+-------------------------+------------------+------------------+
 | Args		  | [(name)|(number)|<(to-  | const MacroArgs  | The argument to- |
 |		  | ken	name)>[, ...]]	    |		       | kens.	Names and |
 |		  |			    |		       | numbers are lit- |
 |		  |			    |		       | eral, everything |
 |		  |			    |		       | else is  of  the |
 |		  |			    |		       | form  '<' token- |
 |		  |			    |		       | Name '>'.	  |
 +----------------+-------------------------+------------------+------------------+

       Example::

	  - Callback: MacroExpands
	    MacroNameTok: X_IMPL
	    MacroDirective: MD_Define
	    Range: [(nonfile), (nonfile)]
	    Args: [a <plus> y, b]

   MacroDefined	Callback
       MacroDefined is called when a macro definition is seen.

       Argument	descriptions:
     +----------------+------------------+------------------+------------------+
     | Argument	Name  |	Argument   Value | Clang C++ Type   | Description      |
     |		      |	Syntax		 |		    |		       |
     +----------------+------------------+------------------+------------------+
     | MacroNameTok   |	(token)		 | const Token	    | The  macro  name |
     |		      |			 |		    | token.	       |
     +----------------+------------------+------------------+------------------+
     | MacroDirective |	(MD_De-		 | const   MacroDi- | The    kind   of |
     |		      |	fine|MD_Unde-	 | rective	    | macro  directive |
     |		      |	fine|MD_Visibil- |		    | from	   the |
     |		      |	ity)		 |		    | MacroDirective   |
     |		      |			 |		    | structure.       |
     +----------------+------------------+------------------+------------------+

       Example::

	  - Callback: MacroDefined
	    MacroNameTok: X_IMPL
	    MacroDirective: MD_Define

   MacroUndefined Callback
       MacroUndefined is called	when a macro #undef is seen.

       Argument	descriptions:
     +----------------+------------------+------------------+------------------+
     | Argument	Name  |	Argument   Value | Clang C++ Type   | Description      |
     |		      |	Syntax		 |		    |		       |
     +----------------+------------------+------------------+------------------+
     | MacroNameTok   |	(token)		 | const Token	    | The  macro  name |
     |		      |			 |		    | token.	       |
     +----------------+------------------+------------------+------------------+
     | MacroDirective |	(MD_De-		 | const   MacroDi- | The    kind   of |
     |		      |	fine|MD_Unde-	 | rective	    | macro  directive |
     |		      |	fine|MD_Visibil- |		    | from	   the |
     |		      |	ity)		 |		    | MacroDirective   |
     |		      |			 |		    | structure.       |
     +----------------+------------------+------------------+------------------+

       Example::

	  - Callback: MacroUndefined
	    MacroNameTok: X_IMPL
	    MacroDirective: MD_Define

   Defined Callback
       Defined is called when the 'defined' operator is	seen.

       Argument	descriptions:
 +----------------+-------------------------+------------------+------------------+
 | Argument Name  | Argument   Value	    | Clang C++	Type   | Description	  |
 |		  | Syntax		    |		       |		  |
 +----------------+-------------------------+------------------+------------------+
 | MacroNameTok	  | (token)		    | const Token      | The  macro  name |
 |		  |			    |		       | token.		  |
 +----------------+-------------------------+------------------+------------------+
 | MacroDirective | (MD_De-		    | const   MacroDi- | The	kind   of |
 |		  | fine|MD_Unde-	    | rective	       | macro	directive |
 |		  | fine|MD_Visibil-	    |		       | from	      the |
 |		  | ity)		    |		       | MacroDirective	  |
 |		  |			    |		       | structure.	  |
 +----------------+-------------------------+------------------+------------------+
 | Range	  | ["(file):(line):(col)", | SourceRange      | The source range |
 |		  | "(file):(line):(col)"]  |		       | for  the  direc- |
 |		  |			    |		       | tive.		  |
 +----------------+-------------------------+------------------+------------------+

       Example::

	  - Callback: Defined
	    MacroNameTok: MACRO
	    MacroDirective: (null)
	    Range: ["D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:5", "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:19"]

   SourceRangeSkipped Callback
       SourceRangeSkipped is called when a source range	is skipped.

       Argument	descriptions:
   +---------------+-------------------------+----------------+------------------+
   | Argument Name | Argument	Value	     | Clang C++ Type |	Description	 |
   |		   | Syntax		     |		      |			 |
   +---------------+-------------------------+----------------+------------------+
   | Range	   | ["(file):(line):(col)", | SourceRange    |	The source range |
   |		   | "(file):(line):(col)"]  |		      |	skipped.	 |
   +---------------+-------------------------+----------------+------------------+

       Example::

	  - Callback: SourceRangeSkipped
	    Range: [":/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:2", ":/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:9:2"]

   If Callback
       If is called when an #if	is seen.

       Argument	descriptions:
  +----------------+-------------------------+----------------+------------------+
  | Argument Name  | Argument	Value	     | Clang C++ Type |	Description	 |
  |		   | Syntax		     |		      |			 |
  +----------------+-------------------------+----------------+------------------+
  | Loc		   | "(file):(line):(col)"   | SourceLocation |	The  location of |
  |		   |			     |		      |	the directive.	 |
  +----------------+-------------------------+----------------+------------------+
  | ConditionRange | ["(file):(line):(col)", | SourceRange    |	The source range |
  |		   | "(file):(line):(col)"]  |		      |	for  the  condi- |
  |		   |			     |		      |	tion.		 |
  +----------------+-------------------------+----------------+------------------+
  | ConditionValue | (true|false)	     | bool	      |	The    condition |
  |		   |			     |		      |	value.		 |
  +----------------+-------------------------+----------------+------------------+

       Example::

	  - Callback: If
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:2"
	    ConditionRange: ["D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:4", "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:9:1"]
	    ConditionValue: false

   Elif	Callback
       Elif is called when an #elif is seen.

       Argument	descriptions:
  +----------------+-------------------------+----------------+------------------+
  | Argument Name  | Argument	Value	     | Clang C++ Type |	Description	 |
  |		   | Syntax		     |		      |			 |
  +----------------+-------------------------+----------------+------------------+
  | Loc		   | "(file):(line):(col)"   | SourceLocation |	The  location of |
  |		   |			     |		      |	the directive.	 |
  +----------------+-------------------------+----------------+------------------+
  | ConditionRange | ["(file):(line):(col)", | SourceRange    |	The source range |
  |		   | "(file):(line):(col)"]  |		      |	for  the  condi- |
  |		   |			     |		      |	tion.		 |
  +----------------+-------------------------+----------------+------------------+
  | ConditionValue | (true|false)	     | bool	      |	The    condition |
  |		   |			     |		      |	value.		 |
  +----------------+-------------------------+----------------+------------------+
  | IfLoc	   | "(file):(line):(col)"   | SourceLocation |	The location  of |
  |		   |			     |		      |	the directive.	 |
  +----------------+-------------------------+----------------+------------------+

       Example::

	  - Callback: Elif
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:10:2"
	    ConditionRange: ["D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:10:4", "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:11:1"]
	    ConditionValue: false
	    IfLoc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:2"

   Ifdef Callback
       Ifdef is	called when an #ifdef is seen.

       Argument	descriptions:
  +----------------+-----------------------+------------------+------------------+
  | Argument Name  | Argument	Value	   | Clang C++ Type   |	Description	 |
  |		   | Syntax		   |		      |			 |
  +----------------+-----------------------+------------------+------------------+
  | Loc		   | "(file):(line):(col)" | SourceLocation   |	The location  of |
  |		   |			   |		      |	the directive.	 |
  +----------------+-----------------------+------------------+------------------+
  | MacroNameTok   | (token)		   | const Token      |	The  macro  name |
  |		   |			   |		      |	token.		 |
  +----------------+-----------------------+------------------+------------------+
  | MacroDirective | (MD_Define|MD_Unde-   | const   MacroDi- |	The    kind   of |
  |		   | fine|MD_Visibility)   | rective	      |	macro  directive |
  |		   |			   |		      |	from	     the |
  |		   |			   |		      |	MacroDirective	 |
  |		   |			   |		      |	structure.	 |
  +----------------+-----------------------+------------------+------------------+

       Example::

	  - Callback: Ifdef
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-conditional.cpp:3:1"
	    MacroNameTok: MACRO
	    MacroDirective: MD_Define

   Ifndef Callback
       Ifndef is called	when an	#ifndef	is seen.

       Argument	descriptions:
  +----------------+-----------------------+------------------+------------------+
  | Argument Name  | Argument	Value	   | Clang C++ Type   |	Description	 |
  |		   | Syntax		   |		      |			 |
  +----------------+-----------------------+------------------+------------------+
  | Loc		   | "(file):(line):(col)" | SourceLocation   |	The  location of |
  |		   |			   |		      |	the directive.	 |
  +----------------+-----------------------+------------------+------------------+
  | MacroNameTok   | (token)		   | const Token      |	The  macro  name |
  |		   |			   |		      |	token.		 |
  +----------------+-----------------------+------------------+------------------+
  | MacroDirective | (MD_Define|MD_Unde-   | const   MacroDi- |	The   kind    of |
  |		   | fine|MD_Visibility)   | rective	      |	macro  directive |
  |		   |			   |		      |	from	     the |
  |		   |			   |		      |	MacroDirective	 |
  |		   |			   |		      |	structure.	 |
  +----------------+-----------------------+------------------+------------------+

       Example::

	  - Callback: Ifndef
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-conditional.cpp:3:1"
	    MacroNameTok: MACRO
	    MacroDirective: MD_Define

   Else	Callback
       Else is called when an #else is seen.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the  else direc-	|
    |		    |			    |		     | tive.		|
    +---------------+-----------------------+----------------+------------------+
    | IfLoc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the   if	 direc-	|
    |		    |			    |		     | tive.		|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: Else
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:10:2"
	    IfLoc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:2"

   Endif Callback
       Endif is	called when an #endif is seen.

       Argument	descriptions:
    +---------------+-----------------------+----------------+------------------+
    | Argument Name | Argument	 Value	    | Clang C++	Type | Description	|
    |		    | Syntax		    |		     |			|
    +---------------+-----------------------+----------------+------------------+
    | Loc	    | "(file):(line):(col)" | SourceLocation | The  location of	|
    |		    |			    |		     | the endif direc-	|
    |		    |			    |		     | tive.		|
    +---------------+-----------------------+----------------+------------------+
    | IfLoc	    | "(file):(line):(col)" | SourceLocation | The location  of	|
    |		    |			    |		     | the   if	 direc-	|
    |		    |			    |		     | tive.		|
    +---------------+-----------------------+----------------+------------------+

       Example::

	  - Callback: Endif
	    Loc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:10:2"
	    IfLoc: "D:/Clang/llvm/clang-tools-extra/test/pp-trace/pp-trace-macro.cpp:8:2"

   Building pp-trace
       To build	from source:

       1. Read Getting Started with the	LLVM System and	Clang Tools Documenta-
	  tion for information on getting sources for LLVM, Clang,  and	 Clang
	  Extra	Tools.

       2. Getting  Started  with  the LLVM System and Building LLVM with CMake
	  give directions for how to build. With sources all checked out  into
	  the  right  place  the  LLVM	build will build Clang Extra Tools and
	  their	dependencies automatically.

	   If using CMake, you	can also use the pp-trace target to build just
	    the	pp-trace tool and its dependencies.

CLANG-RENAME
   Contents
        Clang-Rename

	  Using Clang-Rename

	  Vim Integration

	  Emacs Integration

       See also:

       clang-rename is a C++ refactoring tool. Its purpose is to perform effi-
       cient  renaming	actions	 in  large-scale  projects  such  as  renaming
       classes,	functions, variables, arguments, namespaces etc.

       The  tool  is in	a very early development stage,	so you might encounter
       bugs and	crashes. Submitting reports with information about how to  re-
       produce	the  issue  to	the  LLVM  bugtracker will definitely help the
       project.	If you have any	ideas or suggestions, you might	want to	put  a
       feature request there.

   Using Clang-Rename
       clang-rename  is	 a LibTooling-based tool, and it's easier to work with
       if you set up a compile command database	for your project (for an exam-
       ple of how to do	this see How To	Setup Tooling For LLVM). You can  also
       specify compilation options on the command line after --:

	  $ clang-rename -offset=42 -new-name=foo test.cpp -- -Imy_project/include -DMY_DEFINES	...

       To get an offset	of a symbol in a file run

	  $ grep -FUbo 'foo' file.cpp

       The  tool  currently supports renaming actions inside a single transla-
       tion unit only. It is planned to	extend	the  tool's  functionality  to
       support multi-TU	renaming actions in the	future.

       clang-rename  also  aims	to be easily integrated	into popular text edi-
       tors, such as Vim and Emacs, and	improve	the workflow of	users.

       Although	a command line interface exists, it is highly  recommended  to
       use the text editor interface instead for better	experience.

       You  can	 also identify one or more symbols to be renamed by giving the
       fully qualified name:

	  $ clang-rename -qualified-name=foo -new-name=bar test.cpp

       Renaming	multiple symbols at once is supported, too. However, clang-re-
       name doesn't accept both	-offset	and -qualified-name at the same	 time.
       So, you can either specify multiple -offset or -qualified-name.

	  $ clang-rename -offset=42 -new-name=bar1 -offset=150 -new-name=bar2 test.cpp

       or

	  $ clang-rename -qualified-name=foo1 -new-name=bar1 -qualified-name=foo2 -new-name=bar2 test.cpp

       Alternatively,  {offset	|  qualified-name} / new-name pairs can	be put
       into a YAML file:

	  ---
	  - Offset:	    42
	    NewName:	    bar1
	  - Offset:	    150
	    NewName:	    bar2
	  ...

       or

	  ---
	  - QualifiedName:  foo1
	    NewName:	    bar1
	  - QualifiedName:  foo2
	    NewName:	    bar2
	  ...

       That way	you can	avoid spelling out all the names as command line argu-
       ments:

	  $ clang-rename -input=test.yaml test.cpp

       clang-rename offers the following options:

	  $ clang-rename --help
	  USAGE: clang-rename [subcommand] [options] <source0> [... <sourceN>]

	  OPTIONS:

	  Generic Options:

	    -help		       - Display available options (-help-hidden for more)
	    -help-list		       - Display list of available options (-help-list-hidden for more)
	    -version		       - Display the version of	this program

	  clang-rename common options:

	    -export-fixes=<filename>   - YAML file to store suggested fixes in.
	    -extra-arg=<string>	       - Additional argument to	append to the compiler command line
					 Can be	used several times.
	    -extra-arg-before=<string> - Additional argument to	prepend	to the compiler	command	line
					 Can be	used several times.
	    -force		       - Ignore	nonexistent qualified names.
	    -i			       - Overwrite edited <file>s.
	    -input=<string>	       - YAML file to load oldname-newname pairs from.
	    -new-name=<string>	       - The new name to change	the symbol to.
	    -offset=<uint>	       - Locates the symbol by offset as opposed to <line>:<column>.
	    -p=<string>		       - Build path
	    -pl			       - Print the locations affected by renaming to stderr.
	    -pn			       - Print the found symbol's name prior to	renaming to stderr.
	    -qualified-name=<string>   - The fully qualified name of the symbol.

   Vim Integration
       You can call clang-rename directly from Vim! To set up clang-rename in-
       tegration for Vim see clang/tools/clang-rename/clang-rename.py.

       Please note that	you have to save all buffers, in which the replacement
       will happen before running the tool.

       Once installed, you can point your cursor to symbols you	 want  to  re-
       name, press <leader>cr and type new desired name. The <leader> key is a
       reference  to  a	 specific key defined by the mapleader variable	and is
       bound to	backslash by default.

   Emacs Integration
       You can also use	clang-rename while using Emacs!	To set up clang-rename
       integration for Emacs see clang-rename/tool/clang-rename.el.

       Once installed, you can point your cursor to symbols you	 want  to  re-
       name, press M-X,	type clang-rename and new desired name.

       Please note that	you have to save all buffers, in which the replacement
       will happen before running the tool.

CLANG-DOC
   Contents
        Clang-Doc

	  Use

	  Output

	  Configuration

	    Options

       clang-doc  is a tool for	generating C and C++ documentation from	source
       code and	comments.

       The tool	is in a	very early development stage, so you  might  encounter
       bugs  and crashes. Submitting reports with information about how	to re-
       produce the issue to the	 LLVM  bugtracker  will	 definitely  help  the
       project.	 If you	have any ideas or suggestions, please to put a feature
       request there.

   Use
       clang-doc is a LibTooling-based tool, and so requires a compile command
       database	for your project (for an example of how	to do this see How  To
       Setup Tooling For LLVM).

       By  default, the	tool will run on all files listed in the given compile
       commands	database:

	  $ clang-doc /path/to/compile_commands.json

       The tool	can also be used on a single file or multiple files if a build
       path is passed with the -p flag.

	  $ clang-doc /path/to/file.cpp	-p /path/to/build

   Output
       clang-doc produces a directory of documentation.	One file  is  produced
       for  each  namespace  and record	in the project source code, containing
       all documentation (including contained functions, methods,  and	enums)
       for that	item.

       The top-level directory is configurable through the output flag:

	  $ clang-doc -output=output/directory/	compile_commands.json

   Configuration
       Configuration  for  clang-doc  is currently limited to command-line op-
       tions.  In the future, it may develop the ability to use	 a  configura-
       tion file, but no such efforts are currently in progress.

   Options
       clang-doc offers	the following options:

	  $ clang-doc --help
	  USAGE: clang-doc [options] <source0> [... <sourceN>]

	  OPTIONS:

	  Generic Options:

	    -help		       - Display available options (-help-hidden for more)
	    -help-list		       - Display list of available options (-help-list-hidden for more)
	    -version		       - Display the version of	this program

	  clang-doc options:

	    --doxygen			- Use only doxygen-style comments to generate docs.
	    --extra-arg=<string>	- Additional argument to append	to the compiler	command	line
					  Can be used several times.
	    --extra-arg-before=<string>	- Additional argument to prepend to the	compiler command line
					  Can be used several times.
	    --format=<value>		- Format for outputted docs.
	      =yaml			-   Documentation in YAML format.
	      =md			-   Documentation in MD	format.
	      =html			-   Documentation in HTML format.
	    --ignore-map-errors		- Continue if files are	not mapped correctly.
	    --output=<string>		- Directory for	outputting generated files.
	    -p=<string>			- Build	path
	    --project-name=<string>	- Name of project.
	    --public			- Document only	public declarations.
	    --repository=<string>	-
					  URL of repository that hosts code.
					  Used for links to definition locations.
	    --source-root=<string>	-
					  Directory where processed files are stored.
					  Links	to definition locations	will only be
					  generated if the file	is in this dir.
	    --stylesheets=<string>	- CSS stylesheets to extend the	default	styles.

       The  following  flags  should  only be used if format is	set to html: -
       repository - source-root	- stylesheets

        Index

        Search	Page

AUTHOR
       The Clang Team

COPYRIGHT
       2007-2025, The Clang Team

11				 Apr 17, 2025		    EXTRACLANGTOOLS(1)

Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=extraclangtools11&sektion=1&manpath=FreeBSD+Ports+14.3.quarterly>

home | help