Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
RNADUPLEX(1)			 User Commands			  RNADUPLEX(1)

NAME
       RNAduplex - manual page for RNAduplex 2.7.0

SYNOPSIS
       RNAduplex [OPTION]...

DESCRIPTION
       RNAduplex 2.7.0

       Compute the structure upon hybridization	of two RNA strands

       reads  two  RNA sequences from stdin or <filename> and computes optimal
       and suboptimal secondary	structures for their hybridization. The	calcu-
       lation is simplified by allowing	only inter-molecular base  pairs,  for
       the  general  case  use RNAcofold.  The computed	optimal	and suboptimal
       structure are written to	stdout,	one structure per line.	Each line con-
       sist of:	The structure in dot bracket format with a '&' separating  the
       two  strands.  The  range  of the structure in the two sequences	in the
       format	"from,to  :  from,to";	the  energy  of	 duplex	 structure  in
       kcal/mol.   The	format	is  especially useful for computing the	hybrid
       structure between a small probe sequence	and a long target sequence.

       -h, --help
	      Print help and exit

       --detailed-help
	      Print help, including all	details	and hidden options, and	exit

       --full-help
	      Print help, including hidden options, and	exit

       -V, --version
	      Print version and	exit

       -v, --verbose
	      Be verbose.  (default=off)

	      Lower the	log level setting such that  even  INFO	 messages  are
	      passed through.

   I/O Options:
	      Command line options for input and output	(pre-)processing

       -s, --sorted
	      Sort the printed output by free energy.

	      (default=off)

       --noconv
	      Do not automatically substitute nucleotide "T" with "U".

	      (default=off)

       --log-level=level
	      Set log level threshold.	(default=`2')

	      By  default,  any	log messages are filtered such that only warn-
	      ings (level 2) or	errors (level 3) are printed. This setting al-
	      lows for specifying the log level	threshold, where higher	values
	      result in	fewer information. Log-level 5 turns off all messages,
	      even errors and other critical information.

       --log-file[=filename]
	      Print  log  messages  to	a  file	 instead  of   stderr.	  (de-
	      fault=`RNAduplex.log')

       --log-time
	      Include time stamp in log	messages.

	      (default=off)

       --log-call
	      Include file and line of log calling function.

	      (default=off)

   Algorithms:
	      Select  additional  algorithms  which  should be included	in the
	      calculations.

       -e, --deltaEnergy=range
	      Compute suboptimal structures with energy	in a certain range  of
	      the optimum (kcal/mol).  Default is calculation of mfe structure
	      only.

   Energy Parameters:
	      Energy  parameter	 sets  can be adapted or loaded	from user-pro-
	      vided input files

       -T, --temp=DOUBLE
	      Rescale energy parameters	to a temperature of temp C. Default is
	      37C.

	      (default=`37.0')

       -P, --paramFile=paramfile
	      Read energy parameters from paramfile, instead of	using the  de-
	      fault parameter set.

	      Different	 sets  of energy parameters for	RNA and	DNA should ac-
	      company your distribution.  See the RNAlib documentation for de-
	      tails on the file	format.	The placeholder	file name 'DNA'	can be
	      used to load DNA parameters without the need to actually specify
	      any input	file.

       -4, --noTetra
	      Do not include special tabulated stabilizing energies for	 tri-,
	      tetra- and hexaloop hairpins.

	      (default=off)

	      Mostly for testing.

       --salt=DOUBLE
	      Set salt concentration in	molar (M). Default is 1.021M.

       --saltInit=DOUBLE
	      Provide salt correction for duplex initialization	(in kcal/mol).

   Model Details:
	      Tweak  the energy	model and pairing rules	additionally using the
	      following	parameters

       -d, --dangles=INT
	      How to treat "dangling end" energies for bases adjacent  to  he-
	      lices in free ends and multi-loops.

	      (default=`2')

	      With -d1 only unpaired bases can participate in at most one dan-
	      gling  end.   With  -d2 this check is ignored, dangling energies
	      will be added for	the bases adjacent to a	helix on both sides in
	      any case;	this is	the default for	 mfe  and  partition  function
	      folding  (-p).   The option -d0 ignores dangling ends altogether
	      (mostly for debugging).  With -d3	mfe folding will allow coaxial
	      stacking of adjacent helices in multi-loops. At the  moment  the
	      implementation  will  not	 allow coaxial stacking	of the two en-
	      closed pairs in a	loop of	degree 3 and works only	for mfe	 fold-
	      ing.

	      Note that	with -d1 and -d3 only the MFE computations will	be us-
	      ing this setting while partition function	uses -d2 setting, i.e.
	      dangling ends will be treated differently.

       --noLP Produce structures without lonely	pairs (helices of length 1).

	      (default=off)

	      For  partition  function	folding	this only disallows pairs that
	      can only occur isolated. Other pairs may still occasionally  oc-
	      cur as helices of	length 1.

       --noGU Do not allow GU pairs.

	      (default=off)

       --noClosingGU
	      Do not allow GU pairs at the end of helices.

	      (default=off)

       --nsp=STRING
	      Allow other pairs	in addition to the usual AU,GC,and GU pairs.

	      Its  argument  is	a comma	separated list of additionally allowed
	      pairs. If	the first character is a "-" then AB will  imply  that
	      AB and BA	are allowed pairs, e.g.	--nsp="-GA"  will allow	GA and
	      AG pairs.	Nonstandard pairs are given 0 stacking energy.

       --helical-rise=FLOAT
	      Set the helical rise of the helix	in units of Angstrom.

	      (default=`2.8')

	      Use with caution!	This value will	be re-set automatically	to 3.4
	      in  case	DNA  parameters	 are  loaded via -P DNA	and no further
	      value is provided.

       --backbone-length=FLOAT
	      Set the average backbone length for looped regions in  units  of
	      Angstrom.

	      (default=`6.0')

	      Use  with	 caution!  This	 value will be re-set automatically to
	      6.76 in case DNA parameters are loaded via -P DNA	and no further
	      value is provided.

REFERENCES
       If you use this program in your work you	might want to cite:

       R. Lorenz, S.H. Bernhart, C.  Hoener  zu	 Siederdissen,	H.  Tafer,  C.
       Flamm,  P.F. Stadler and	I.L. Hofacker (2011), "ViennaRNA Package 2.0",
       Algorithms for Molecular	Biology: 6:26

       I.L. Hofacker, W. Fontana, P.F. Stadler,	S. Bonhoeffer, M.  Tacker,  P.
       Schuster	 (1994),  "Fast	Folding	and Comparison of RNA Secondary	Struc-
       tures", Monatshefte f. Chemie: 125, pp 167-188

       R. Lorenz, I.L. Hofacker, P.F. Stadler (2016), "RNA folding  with  hard
       and soft	constraints", Algorithms for Molecular Biology 11:1 pp 1-13

       The energy parameters are taken from:

       D.H.  Mathews, M.D. Disney, D. Matthew, J.L. Childs, S.J. Schroeder, J.
       Susan, M. Zuker,	D.H. Turner (2004), "Incorporating chemical  modifica-
       tion constraints	into a dynamic programming algorithm for prediction of
       RNA secondary structure", Proc. Natl. Acad. Sci.	USA: 101, pp 7287-7292

       D.H  Turner, D.H. Mathews (2009), "NNDB:	The nearest neighbor parameter
       database	for predicting stability of nucleic acid secondary structure",
       Nucleic Acids Research: 38, pp 280-282

AUTHOR
       Ivo L Hofacker, Ronny Lorenz

REPORTING BUGS
       If in doubt our program is right, nature	is at fault.  Comments	should
       be sent to rna@tbi.univie.ac.at.

SEE ALSO
       RNAcofold(l) RNAfold(l)

RNAduplex 2.7.0			 October 2024			  RNADUPLEX(1)

Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=RNAduplex&sektion=1&manpath=FreeBSD+Ports+14.3.quarterly>

home | help