Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
hpcg_kernel(1)		       Utility Commands			hpcg_kernel(1)

NAME
       hpcg_kernel - high performance conjugate	gradient kernel	benchmark

SYNOPSIS
       hpcg_kernel matrix_type solution_filename rhistory_filename [options]

DESCRIPTION
       This  program  solves the linear	equation Ax = b	with additive Schwarz,
       symmetric Gauss-Seidel preconditioned conjugate gradient	solver,	 where
       the  coefficient	 matrix	 A  of	size lmn is derived from a discretized
       three dimensional Poisson's equation using the twenty-seven point  cen-
       tral difference scheme, with the	coefficient matrix in the storage for-
       mat  specified by matrix_type and the solver specified by  options.  It
       outputs the solution to solution_filename in the	extended Matrix	Market
       format and the residual history to  rhistory_filename in	the PLAIN for-
       mat (see	Appendix of the	Lis User Guide).  The right-hand  side	vector
       is set such that	the values of the elements of the solution are 1.  The
       values  l,  m and n represent the numbers of grid points	in each	dimen-
       sion.

OVERRIDE OPTIONS
       The following options are supported:

       -i linear solver
	      The following options are	supported for linear solver:

	      -i {cg|1}
		     CG

	      -i {bicg|2}
		     BiCG

	      -i {cgs|3}
		     CGS

	      -i {bicgstab|4}
		     BiCGSTAB

	      -i {bicgstabl|5}
		     BiCGSTAB(l)

		     -ell [2]
			    The	degree l

	      -i {gpbicg|6}
		     GPBiCG

	      -i {tfqmr|7}
		     TFQMR

	      -i {orthomin|8}
		     Orthomin(m)

		     -restart [40]
			    The	restart	value m

	      -i {gmres|9}
		     GMRES(m)

		     -restart [40]
			    The	restart	value m

	      -i {jacobi|10}
		     Jacobi

	      -i {gs|11}
		     Gauss-Seidel

	      -i {sor|12}
		     SOR

		     -omega [1.9]
			    The	relaxation coefficient omega (0<omega<2)

	      -i {bicgsafe|13}
		     BiCGSafe

	      -i {cr|14}
		     CR

	      -i {bicr|15}
		     BiCR

	      -i {crs|16}
		     CRS

	      -i {bicrstab|17}
		     BiCRSTAB

	      -i {gpbicr|18}
		     GPBiCR

	      -i {bicrsafe|19}
		     BiCRSafe

	      -i {fgmres|20}
		     FGMRES(m)

		     -restart [40]
			    The	restart	value m

	      -i {idrs|21}
		     IDR(s)

		     -irestart [2]
			    The	restart	value s

	      -i {idr1|22}
		     IDR(1)

	      -i {minres|23}
		     MINRES

	      -i {COCG|24}
		     COCG

	      -i {COCR|25}
		     COCR

       -p preconditioner
	      The following options are	supported for preconditioner:

	      -p {none|0}
		     None

	      -p {jacobi|1}
		     Jacobi

	      -p {ilu|2}
		     ILU(k)

		     -ilu_fill [0]
			    The	fill level k

	      -p {ssor|3}
		     SSOR

		     -ssor_omega [1.0]
			    The	relaxation coefficient omega (0<omega<2)

	      -p {hybrid|4}
		     Hybrid

		     -hybrid_i [sor]
			    The	linear solver

		     -hybrid_maxiter [25]
			    The	maximum	number of the iterations

		     -hybrid_tol [1.0e-3]
			    The	convergence criterion

		     -hybrid_omega [1.5]
			    The	 relaxation  coefficient  omega	 of  the   SOR
			    (0<omega<2)

		     -hybrid_ell [2]
			    The	degree l of the	BiCGSTAB(l)

		     -hybrid_restart [40]
			    The	restart	values of the GMRES and	Orthomin

	      -p {is|5}
		     I+S

		     -is_alpha [1.0]
			    The	parameter alpha	of I+alpha*S(m)

		     -is_m [3]
			    The	parameter m of I+alpha*S(m)

	      -p {sainv|6}
		     SAINV

		     -sainv_drop [0.05]
			    The	drop criterion

	      -p {saamg|7}
		     SA-AMG

		     -saamg_unsym [false]
			    Select  the	unsymmetric version (The matrix	struc-
			    ture must be symmetric)

		     -saamg_theta [0.05|0.12]
			    The	drop criterion

	      -p {iluc|8}
		     Crout ILU

		     -iluc_drop	[0.05]
			    The	drop criterion

		     -iluc_rate	[5.0]
			    The	ration of maximum fill-in

	      -p {ilut|9}
		     ILUT

		     -ilut_drop	[0.05]
			    The	drop criterion

		     -ilut_rate	[5.0]
			    The	ration of maximum fill-in

	      -adds true
		     Additive Schwarz

		     -adds_iter	[1]
			    The	number of the iteration

       Other Options:

       -maxiter	[1000]
	      The maximum number of the	iterations

       -tol [1.0e-12]
	      The convergence criterion

       -print [0]
	      The display of the residual history

	      -print {none|0}
		     None

	      -print {mem|1}
		     Save the residual history

	      -print {out|2}
		     Display the residual history

	      -print {all|3}
		     Save the residual history and output it to	 the  standard
		     output

       -scale [0]
	      The scaling

	      -scale {none|0}
		     No	scaling

	      -scale {jacobi|1}
		     The Jacobi	scaling

	      -scale {symm_diag|2}
		     The diagonal scaling

       -initx_zeros [true]
	      The behavior of the initial vector x_0

	      -initx_zero {false|0}
		     Given values

	      -initx_zero {true|1}
		     All values	are set	to 0

       -omp_num_threads	[t]
	      The  number  of  the threads (t represents the maximum number of
	      the threads)

       -storage	[0]
	      The matrix storage format

       -storage_block [2]
	      The block	size of	the BSR	and BSC	formats

       -f [0] The precision of the linear solver

	      -f {double|0}
		     Double precision

	      -f {quad|1}
		     Double-double (quadruple) precision

       See Lis User Guide for full description.

EXIT STATUS
       The following exit values are returned:

       0      The process is normally terminated

       unspecified
	      An error occurred

SEE ALSO
       lis(3),	lsolve(1),  esolve(1),	hpcg_spmvtest(1),  spmvtest1(1),   sp-
       mvtest2(1),  spmvtest2b(1),  spmvtest3(1), spmvtest3b(1), spmvtest4(1),
       spmvtest5(1)

       http://www.ssisc.org/lis/
       http://software.sandia.gov/hpcg/

Man Page			  14 Sep 2017			hpcg_kernel(1)

Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=hpcg_kernel&sektion=1&manpath=FreeBSD+Ports+15.0>

home | help