Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
lsolve(1)		       Utility Commands			     lsolve(1)

NAME
       lsolve -	linear solver for sparse matrices

SYNOPSIS
       lsolve  matrix_filename rhs_setting solution_filename rhistory_filename
       [options]

DESCRIPTION
       This program inputs  the	 data  of  the	coefficient  matrix  from  ma-
       trix_filename  and  solves  the linear equation A*x = b with the	solver
       specified by options.  It outputs the solution to solution_filename  in
       the  extended  Matrix  Market  format and the residual history to rhis-
       tory_filename in	the PLAIN format (see Appendix of the Lis User Guide).
       Both the	extended Matrix	Market format and  the	Harwell-Boeing	format
       are supported for the matrix filename.

       One of the following values can be specified by rhs_setting:

       0      Use the right hand side vector b included	in matrix_filename

       1      Use b = (1, ..., 1)^T

       2      Use b = A	* (1, ..., 1)^T

       rhs_filename
	      The filename for the right-hand side vector

       The PLAIN and Matrix Market formats are supported for rhs_filename.

OPTIONS
       The following options are supported:

       -i linear solver
	      The following options are	supported for linear solver:

	      -i {cg|1}
		     CG

	      -i {bicg|2}
		     BiCG

	      -i {cgs|3}
		     CGS

	      -i {bicgstab|4}
		     BiCGSTAB

	      -i {bicgstabl|5}
		     BiCGSTAB(l)

		     -ell [2]
			    The	degree l

	      -i {gpbicg|6}
		     GPBiCG

	      -i {tfqmr|7}
		     TFQMR

	      -i {orthomin|8}
		     Orthomin(m)

		     -restart [40]
			    The	restart	value m

	      -i {gmres|9}
		     GMRES(m)

		     -restart [40]
			    The	restart	value m

	      -i {jacobi|10}
		     Jacobi

	      -i {gs|11}
		     Gauss-Seidel

	      -i {sor|12}
		     SOR

		     -omega [1.9]
			    The	relaxation coefficient omega (0<omega<2)

	      -i {bicgsafe|13}
		     BiCGSafe

	      -i {cr|14}
		     CR

	      -i {bicr|15}
		     BiCR

	      -i {crs|16}
		     CRS

	      -i {bicrstab|17}
		     BiCRSTAB

	      -i {gpbicr|18}
		     GPBiCR

	      -i {bicrsafe|19}
		     BiCRSafe

	      -i {fgmres|20}
		     FGMRES(m)

		     -restart [40]
			    The	restart	value m

	      -i {idrs|21}
		     IDR(s)

		     -irestart [2]
			    The	restart	value s

	      -i {idr1|22}
		     IDR(1)

	      -i {minres|23}
		     MINRES

	      -i {COCG|24}
		     COCG

	      -i {COCR|25}
		     COCR

       -p preconditioner
	      The following options are	supported for preconditioner:

	      -p {none|0}
		     None

	      -p {jacobi|1}
		     Jacobi

	      -p {ilu|2}
		     ILU(k)

		     -ilu_fill [0]
			    The	fill level k

	      -p {ssor|3}
		     SSOR

		     -ssor_omega [1.0]
			    The	relaxation coefficient omega (0<omega<2)

	      -p {hybrid|4}
		     Hybrid

		     -hybrid_i [sor]
			    The	linear solver

		     -hybrid_maxiter [25]
			    The	maximum	number of the iterations

		     -hybrid_tol [1.0e-3]
			    The	convergence criterion

		     -hybrid_omega [1.5]
			    The	  relaxation  coefficient  omega  of  the  SOR
			    (0<omega<2)

		     -hybrid_ell [2]
			    The	degree l of the	BiCGSTAB(l)

		     -hybrid_restart [40]
			    The	restart	values of the GMRES and	Orthomin

	      -p {is|5}
		     I+S

		     -is_alpha [1.0]
			    The	parameter alpha	of I+alpha*S(m)

		     -is_m [3]
			    The	parameter m of I+alpha*S(m)

	      -p {sainv|6}
		     SAINV

		     -sainv_drop [0.05]
			    The	drop criterion

	      -p {saamg|7}
		     SA-AMG

		     -saamg_unsym [false]
			    Select the unsymmetric version (The	matrix	struc-
			    ture must be symmetric)

		     -saamg_theta [0.05|0.12]
			    The	drop criterion

	      -p {iluc|8}
		     Crout ILU

		     -iluc_drop	[0.05]
			    The	drop criterion

		     -iluc_rate	[5.0]
			    The	ration of maximum fill-in

	      -p {ilut|9}
		     ILUT

		     -ilut_drop	[0.05]
			    The	drop criterion

		     -ilut_rate	[5.0]
			    The	ration of maximum fill-in

	      -adds true
		     Additive Schwarz

		     -adds_iter	[1]
			    The	number of the iteration

       Other Options:

       -maxiter	[1000]
	      The maximum number of the	iterations

       -tol [1.0e-12]
	      The convergence criterion

       -print [0]
	      The output of the	residual history

	      -print {none|0}
		     None

	      -print {mem|1}
		     Save the residual history

	      -print {out|2}
		     Output it to the standard output

	      -print {all|3}
		     Save  the	residual history and output it to the standard
		     output

       -scale [0]
	      The scaling

	      -scale {none|0}
		     No	scaling

	      -scale {jacobi|1}
		     The Jacobi	scaling

	      -scale {symm_diag|2}
		     The diagonal scaling

       -initx_zeros [true]
	      The behavior of the initial vector x_0

	      -initx_zero {false|0}
		     Given values

	      -initx_zero {true|1}
		     All values	are set	to 0

       -omp_num_threads	[t]
	      The number of the	threads	(t represents the  maximum  number  of
	      the threads)

       -storage	[0]
	      The matrix storage format

       -storage_block [2]
	      The block	size of	the BSR	and BSC	formats

       -f [0] The precision of the linear solver

	      -f {double|0}
		     Double precision

	      -f {quad|1}
		     Double-double (quadruple) precision

       See Lis User Guide for full description.

EXIT STATUS
       The following exit values are returned:

       0      The process is normally terminated

       unspecified
	      An error occurred

SEE ALSO
       lis(3),	esolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1), sp-
       mvtest2(1), spmvtest2b(1), spmvtest3(1),	 spmvtest3b(1),	 spmvtest4(1),
       spmvtest5(1)

       http://www.ssisc.org/lis/
       http://math.nist.gov/MatrixMarket/

Man Page			  14 Sep 2017			     lsolve(1)

Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=lsolve&sektion=1&manpath=FreeBSD+Ports+15.0>

home | help