FreeBSD Manual Pages
std::chi_sq...distribution(3) C++ Standard Libarystd::chi_sq...distribution(3) NAME std::chi_squared_distribution - std::chi_squared_distribution Synopsis Defined in header <random> template< class RealType = double > (since C++11) class chi_squared_distribution; The chi_squared_distribution produces random numbers \(\small x>0\)x>0 according to the Chi-squared distribution: \({\small f(x;n) = }\frac{x^{(n/2)-1}\exp{(-x/2)} }{\Gamma{(n/2)}2^{n/2} }\)f(x;n) = x(n/2)-1 e^-x/2 (n/2) 2n/2 \(\small\Gamma\) is the Gamma function (See also std::tgamma) and \(\small n\)n are the degrees of freedom (default 1). std::chi_squared_distribution satisfies all requirements of Random- NumberDistribution Template parameters RealType - The result type generated by the generator. The effect is undefined if this is not one of float, double, or long double. Member types Member type Definition result_type(C++11) RealType param_type(C++11) the type of the parameter set, see RandomNum- berDistribution. Member functions constructor constructs new distribution (C++11) (public member function) reset resets the internal state of the distribution (C++11) (public member function) Generation operator() generates the next random number in the distribution (C++11) (public member function) Characteristics n returns the degrees of freedom (\(\small n\)n) distri- bution parameter (C++11) (public member function) param gets or sets the distribution parameter object (C++11) (public member function) min returns the minimum potentially generated value (C++11) (public member function) max returns the maximum potentially generated value (C++11) (public member function) Non-member functions operator== operator!= compares two distribution objects (C++11) (function) (C++11)(removed in C++20) operator<< performs stream input and output on pseudo-random number operator>> distribution (C++11) (function template) Example // Run this code #include <random> #include <iomanip> #include <map> #include <algorithm> #include <iostream> #include <vector> #include <cmath> template <int Height = 5, int BarWidth = 1, int Padding = 1, int Off- set = 0, class Seq> void draw_vbars(Seq&& s, const bool DrawMinMax = true) { static_assert((Height > 0) && (BarWidth > 0) && (Padding >= 0) && (Offset >= 0)); auto cout_n = [](auto&& v, int n = 1) { while (n-- > 0) std::cout << v; }; const auto [min, max] = std::minmax_element(std::cbegin(s), std::cend(s)); std::vector<std::div_t> qr; for (typedef decltype(*cbegin(s)) V; V e : s) qr.push_back(std::div(std::lerp(V(0), Height*8, (e - *min)/(*max - *min)), 8)); for (auto h{Height}; h-- > 0; cout_n('\n')) { cout_n(' ', Offset); for (auto dv : qr) { const auto q{dv.quot}, r{dv.rem}; unsigned char d[] { 0xe2, 0x96, 0x88, 0 }; // Full Block: '' q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0; cout_n(d, BarWidth), cout_n(' ', Padding); } if (DrawMinMax && Height > 1) Height - 1 == h ? std::cout << " " << *max: h ? std::cout << " " : std::cout << " " << *min; } } int main() { std::random_device rd{}; std::mt19937 gen{rd()}; auto 2 = [&gen](const float dof) { std::chi_squared_distribution<float> d{ dof /* n */ }; const int norm = 1'00'00; const float cutoff = 0.002f; std::map<int, int> hist{}; for (int n=0; n!=norm; ++n) { ++hist[std::round(d(gen))]; } std::vector<float> bars; std::vector<int> indices; for (auto const& [n, p] : hist) { if (float x = p * (1.0/norm); cutoff < x) { bars.push_back(x); indices.push_back(n); } } std::cout << "dof = " << dof << ":\n"; draw_vbars<4,3>(bars); for (int n : indices) { std::cout << "" << std::setw(2) << n << " "; } std::cout << "\n\n"; }; for (float dof : {1.f, 2.f, 3.f, 4.f, 6.f, 9.f}) 2(dof); } Possible output: dof = 1: 0.5271 0.003 0 1 2 3 4 5 6 7 8 dof = 2: 0.3169 0.004 0 1 2 3 4 5 6 7 8 9 10 dof = 3: 0.2439 0.0033 0 1 2 3 4 5 6 7 8 9 10 11 12 dof = 4: 0.1864 0.0026 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 dof = 6: 0.1351 0.0031 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 dof = 9: 0.1044 0.0034 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 External links * Weisstein, Eric W. "Chi-Squared Distribution." From MathWorld--A Wolfram Web Resource. * Chi-squared distribution. From Wikipedia. http://cppreference.com 2022.07.31 std::chi_sq...distribution(3)
NAME | Synopsis | Template parameters | Member types | Member functions | Generation | Characteristics | Non-member functions | Example | Possible output: | External links
Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=std::chi_squared_distribution&sektion=3&manpath=FreeBSD+Ports+15.0>
