Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
EVP_PKEY_CTX_CTRL(3)		    OpenSSL		  EVP_PKEY_CTX_CTRL(3)

NAME
       EVP_PKEY_CTX_ctrl, EVP_PKEY_CTX_ctrl_str, EVP_PKEY_CTX_ctrl_uint64,
       EVP_PKEY_CTX_md,	EVP_PKEY_CTX_set_signature_md,
       EVP_PKEY_CTX_get_signature_md, EVP_PKEY_CTX_set_mac_key,
       EVP_PKEY_CTX_set_rsa_padding, EVP_PKEY_CTX_get_rsa_padding,
       EVP_PKEY_CTX_set_rsa_pss_saltlen, EVP_PKEY_CTX_get_rsa_pss_saltlen,
       EVP_PKEY_CTX_set_rsa_keygen_bits, EVP_PKEY_CTX_set_rsa_keygen_pubexp,
       EVP_PKEY_CTX_set_rsa_keygen_primes, EVP_PKEY_CTX_set_rsa_mgf1_md,
       EVP_PKEY_CTX_get_rsa_mgf1_md, EVP_PKEY_CTX_set_rsa_oaep_md,
       EVP_PKEY_CTX_get_rsa_oaep_md, EVP_PKEY_CTX_set0_rsa_oaep_label,
       EVP_PKEY_CTX_get0_rsa_oaep_label, EVP_PKEY_CTX_set_dsa_paramgen_bits,
       EVP_PKEY_CTX_set_dsa_paramgen_q_bits, EVP_PKEY_CTX_set_dsa_paramgen_md,
       EVP_PKEY_CTX_set_dh_paramgen_prime_len,
       EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
       EVP_PKEY_CTX_set_dh_paramgen_generator,
       EVP_PKEY_CTX_set_dh_paramgen_type, EVP_PKEY_CTX_set_dh_rfc5114,
       EVP_PKEY_CTX_set_dhx_rfc5114, EVP_PKEY_CTX_set_dh_pad,
       EVP_PKEY_CTX_set_dh_nid,	EVP_PKEY_CTX_set_dh_kdf_type,
       EVP_PKEY_CTX_get_dh_kdf_type, EVP_PKEY_CTX_set0_dh_kdf_oid,
       EVP_PKEY_CTX_get0_dh_kdf_oid, EVP_PKEY_CTX_set_dh_kdf_md,
       EVP_PKEY_CTX_get_dh_kdf_md, EVP_PKEY_CTX_set_dh_kdf_outlen,
       EVP_PKEY_CTX_get_dh_kdf_outlen, EVP_PKEY_CTX_set0_dh_kdf_ukm,
       EVP_PKEY_CTX_get0_dh_kdf_ukm, EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
       EVP_PKEY_CTX_set_ec_param_enc, EVP_PKEY_CTX_set_ecdh_cofactor_mode,
       EVP_PKEY_CTX_get_ecdh_cofactor_mode, EVP_PKEY_CTX_set_ecdh_kdf_type,
       EVP_PKEY_CTX_get_ecdh_kdf_type, EVP_PKEY_CTX_set_ecdh_kdf_md,
       EVP_PKEY_CTX_get_ecdh_kdf_md, EVP_PKEY_CTX_set_ecdh_kdf_outlen,
       EVP_PKEY_CTX_get_ecdh_kdf_outlen, EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
       EVP_PKEY_CTX_get0_ecdh_kdf_ukm, EVP_PKEY_CTX_set1_id,
       EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len -	algorithm specific
       control operations

SYNOPSIS
	#include <openssl/evp.h>

	int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
			      int cmd, int p1, void *p2);
	int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx,	int keytype, int optype,
				     int cmd, uint64_t value);
	int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char	*type,
				  const	char *value);

	int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);

	int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
	int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);

	int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx,	unsigned char *key, int	len);

	#include <openssl/rsa.h>

	int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int	pad);
	int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int	*pad);
	int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx,	int len);
	int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx,	int *len);
	int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx,	int mbits);
	int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
	int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
	int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
	int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
	int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
	int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
	int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx,	unsigned char *label, int len);
	int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,	unsigned char **label);

	#include <openssl/dsa.h>

	int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
	int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int	qbits);
	int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx,	const EVP_MD *md);

	#include <openssl/dh.h>

	int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX	*ctx, int len);
	int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
	int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX	*ctx, int gen);
	int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
	int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
	int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
	int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
	int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int	rfc5114);
	int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int	kdf);
	int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
	int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT	*oid);
	int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT	**oid);
	int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const	EVP_MD *md);
	int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const	EVP_MD **md);
	int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX	*ctx, int len);
	int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX	*ctx, int *len);
	int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm,	int len);
	int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);

	#include <openssl/ec.h>

	int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX	*ctx, int nid);
	int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
	int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
	int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
	int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX	*ctx, int kdf);
	int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX	*ctx);
	int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
	int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
	int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx,	int len);
	int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx,	int *len);
	int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX	*ctx, unsigned char *ukm, int len);
	int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX	*ctx, unsigned char **ukm);

	int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
	int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
	int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx,	size_t *id_len);

DESCRIPTION
       The function EVP_PKEY_CTX_ctrl()	sends a	control	operation to the
       context ctx. The	key type used must match keytype if it is not -1. The
       parameter optype	is a mask indicating which operations the control can
       be applied to.  The control command is indicated	in cmd and any
       additional arguments in p1 and p2.

       For cmd = EVP_PKEY_CTRL_SET_MAC_KEY, p1 is the length of	the MAC	key,
       and p2 is MAC key. This is used by Poly1305, SipHash, HMAC and CMAC.

       Applications will not normally call EVP_PKEY_CTX_ctrl() directly	but
       will instead call one of	the algorithm specific macros below.

       The function EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly
       passes a	uint64 value as	p2 to EVP_PKEY_CTX_ctrl().

       The function EVP_PKEY_CTX_ctrl_str() allows an application to send an
       algorithm specific control operation to a context ctx in	string form.
       This is intended	to be used for options specified on the	command	line
       or in text files. The commands supported	are documented in the openssl
       utility command line pages for the option -pkeyopt which	is supported
       by the pkeyutl, genpkey and req commands.

       The function EVP_PKEY_CTX_md() sends a message digest control operation
       to the context ctx. The message digest is specified by its name md.

       All the remaining "functions" are implemented as	macros.

       The EVP_PKEY_CTX_set_signature_md() macro sets the message digest type
       used in a signature. It can be used in the RSA, DSA and ECDSA
       algorithms.

       The EVP_PKEY_CTX_get_signature_md() macro gets the message digest type
       used in a signature. It can be used in the RSA, DSA and ECDSA
       algorithms.

       Key generation typically	involves setting up parameters to be used and
       generating the private and public key data. Some	algorithm
       implementations allow private key data to be set	explicitly using the
       EVP_PKEY_CTX_set_mac_key() macro. In this case key generation is	simply
       the process of setting up the parameters	for the	key and	then setting
       the raw key data	to the value explicitly	provided by that macro.
       Normally	applications would call	EVP_PKEY_new_raw_private_key(3)	or
       similar functions instead of this macro.

       The EVP_PKEY_CTX_set_mac_key() macro can	be used	with any of the
       algorithms supported by the EVP_PKEY_new_raw_private_key(3) function.

   RSA parameters
       The EVP_PKEY_CTX_set_rsa_padding() macro	sets the RSA padding mode for
       ctx.  The pad parameter can take	the value RSA_PKCS1_PADDING for	PKCS#1
       padding,	RSA_SSLV23_PADDING for SSLv23 padding, RSA_NO_PADDING for no
       padding,	RSA_PKCS1_OAEP_PADDING for OAEP	padding	(encrypt and decrypt
       only), RSA_X931_PADDING for X9.31 padding (signature operations only)
       and RSA_PKCS1_PSS_PADDING (sign and verify only).

       Two RSA padding modes behave differently	if
       EVP_PKEY_CTX_set_signature_md() is used.	If this	macro is called	for
       PKCS#1 padding the plaintext buffer is an actual	digest value and is
       encapsulated in a DigestInfo structure according	to PKCS#1 when signing
       and this	structure is expected (and stripped off) when verifying. If
       this control is not used	with RSA and PKCS#1 padding then the supplied
       data is used directly and not encapsulated. In the case of X9.31
       padding for RSA the algorithm identifier	byte is	added or checked and
       removed if this control is called. If it	is not called then the first
       byte of the plaintext buffer is expected	to be the algorithm identifier
       byte.

       The EVP_PKEY_CTX_get_rsa_padding() macro	gets the RSA padding mode for
       ctx.

       The EVP_PKEY_CTX_set_rsa_pss_saltlen() macro sets the RSA PSS salt
       length to len. As its name implies it is	only supported for PSS
       padding.	Three special values are supported: RSA_PSS_SALTLEN_DIGEST
       sets the	salt length to the digest length, RSA_PSS_SALTLEN_MAX sets the
       salt length to the maximum permissible value. When verifying
       RSA_PSS_SALTLEN_AUTO causes the salt length to be automatically
       determined based	on the PSS block structure. If this macro is not
       called maximum salt length is used when signing and auto	detection when
       verifying is used by default.

       The EVP_PKEY_CTX_get_rsa_pss_saltlen() macro gets the RSA PSS salt
       length for ctx. The padding mode	must have been set to
       RSA_PKCS1_PSS_PADDING.

       The EVP_PKEY_CTX_set_rsa_keygen_bits() macro sets the RSA key length
       for RSA key generation to bits. If not specified	1024 bits is used.

       The EVP_PKEY_CTX_set_rsa_keygen_pubexp()	macro sets the public exponent
       value for RSA key generation to pubexp. Currently it should be an odd
       integer.	The pubexp pointer is used internally by this function so it
       should not be modified or freed after the call. If not specified	65537
       is used.

       The EVP_PKEY_CTX_set_rsa_keygen_primes()	macro sets the number of
       primes for RSA key generation to	primes.	If not specified 2 is used.

       The EVP_PKEY_CTX_set_rsa_mgf1_md() macro	sets the MGF1 digest for RSA
       padding schemes to md. If not explicitly	set the	signing	digest is
       used. The padding mode must have	been set to RSA_PKCS1_OAEP_PADDING or
       RSA_PKCS1_PSS_PADDING.

       The EVP_PKEY_CTX_get_rsa_mgf1_md() macro	gets the MGF1 digest for ctx.
       If not explicitly set the signing digest	is used. The padding mode must
       have been set to	RSA_PKCS1_OAEP_PADDING or RSA_PKCS1_PSS_PADDING.

       The EVP_PKEY_CTX_set_rsa_oaep_md() macro	sets the message digest	type
       used in RSA OAEP	to md. The padding mode	must have been set to
       RSA_PKCS1_OAEP_PADDING.

       The EVP_PKEY_CTX_get_rsa_oaep_md() macro	gets the message digest	type
       used in RSA OAEP	to md. The padding mode	must have been set to
       RSA_PKCS1_OAEP_PADDING.

       The EVP_PKEY_CTX_set0_rsa_oaep_label() macro sets the RSA OAEP label to
       label and its length to len. If label is	NULL or	len is 0, the label is
       cleared.	The library takes ownership of the label so the	caller should
       not free	the original memory pointed to by label.  The padding mode
       must have been set to RSA_PKCS1_OAEP_PADDING.

       The EVP_PKEY_CTX_get0_rsa_oaep_label() macro gets the RSA OAEP label to
       label. The return value is the label length. The	padding	mode must have
       been set	to RSA_PKCS1_OAEP_PADDING. The resulting pointer is owned by
       the library and should not be freed by the caller.

   DSA parameters
       The EVP_PKEY_CTX_set_dsa_paramgen_bits()	macro sets the number of bits
       used for	DSA parameter generation to nbits. If not specified, 1024 is
       used.

       The EVP_PKEY_CTX_set_dsa_paramgen_q_bits() macro	sets the number	of
       bits in the subprime parameter q	for DSA	parameter generation to	qbits.
       If not specified, 160 is	used. If a digest function is specified	below,
       this parameter is ignored and instead, the number of bits in q matches
       the size	of the digest.

       The EVP_PKEY_CTX_set_dsa_paramgen_md() macro sets the digest function
       used for	DSA parameter generation to md.	If not specified, one of
       SHA-1, SHA-224, or SHA-256 is selected to match the bit length of q
       above.

   DH parameters
       The EVP_PKEY_CTX_set_dh_paramgen_prime_len() macro sets the length of
       the DH prime parameter p	for DH parameter generation. If	this macro is
       not called then 1024 is used. Only accepts lengths greater than or
       equal to	256.

       The EVP_PKEY_CTX_set_dh_paramgen_subprime_len() macro sets the length
       of the DH optional subprime parameter q for DH parameter	generation.
       The default is 256 if the prime is at least 2048	bits long or 160
       otherwise. The DH paramgen type must have been set to x9.42.

       The EVP_PKEY_CTX_set_dh_paramgen_generator() macro sets DH generator to
       gen for DH parameter generation.	If not specified 2 is used.

       The EVP_PKEY_CTX_set_dh_paramgen_type() macro sets the key type for DH
       parameter generation. Use 0 for PKCS#3 DH and 1 for X9.42 DH.  The
       default is 0.

       The EVP_PKEY_CTX_set_dh_pad() macro sets	the DH padding mode. If	pad is
       1 the shared secret is padded with zeros	up to the size of the DH prime
       p.  If pad is zero (the default)	then no	padding	is performed.

       EVP_PKEY_CTX_set_dh_nid() sets the DH parameters	to values
       corresponding to	nid as defined in RFC7919. The nid parameter must be
       NID_ffdhe2048, NID_ffdhe3072, NID_ffdhe4096, NID_ffdhe6144,
       NID_ffdhe8192 or	NID_undef to clear the stored value. This macro	can be
       called during parameter or key generation.  The nid parameter and the
       rfc5114 parameter are mutually exclusive.

       The EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114()
       macros are synonymous. They set the DH parameters to the	values defined
       in RFC5114. The rfc5114 parameter must be 1, 2 or 3 corresponding to
       RFC5114 sections	2.1, 2.2 and 2.3. or 0 to clear	the stored value. This
       macro can be called during parameter generation.	The ctx	must have a
       key type	of EVP_PKEY_DHX.  The rfc5114 parameter	and the	nid parameter
       are mutually exclusive.

   DH key derivation function parameters
       Note that all of	the following functions	require	that the ctx parameter
       has a private key type of EVP_PKEY_DHX. When using key derivation, the
       output of EVP_PKEY_derive() is the output of the	KDF instead of the DH
       shared secret.  The KDF output is typically used	as a Key Encryption
       Key (KEK) that in turn encrypts a Content Encryption Key	(CEK).

       The EVP_PKEY_CTX_set_dh_kdf_type() macro	sets the key derivation
       function	type to	kdf for	DH key derivation. Possible values are
       EVP_PKEY_DH_KDF_NONE and	EVP_PKEY_DH_KDF_X9_42 which uses the key
       derivation specified in RFC2631 (based on the keying algorithm
       described in X9.42). When using key derivation, the kdf_oid, kdf_md and
       kdf_outlen parameters must also be specified.

       The EVP_PKEY_CTX_get_dh_kdf_type() macro	gets the key derivation
       function	type for ctx used for DH key derivation. Possible values are
       EVP_PKEY_DH_KDF_NONE and	EVP_PKEY_DH_KDF_X9_42.

       The EVP_PKEY_CTX_set0_dh_kdf_oid() macro	sets the key derivation
       function	object identifier to oid for DH	key derivation.	This OID
       should identify the algorithm to	be used	with the Content Encryption
       Key.  The library takes ownership of the	object identifier so the
       caller should not free the original memory pointed to by	oid.

       The EVP_PKEY_CTX_get0_dh_kdf_oid() macro	gets the key derivation
       function	oid for	ctx used for DH	key derivation.	The resulting pointer
       is owned	by the library and should not be freed by the caller.

       The EVP_PKEY_CTX_set_dh_kdf_md()	macro sets the key derivation function
       message digest to md for	DH key derivation. Note	that RFC2631 specifies
       that this digest	should be SHA1 but OpenSSL tolerates other digests.

       The EVP_PKEY_CTX_get_dh_kdf_md()	macro gets the key derivation function
       message digest for ctx used for DH key derivation.

       The EVP_PKEY_CTX_set_dh_kdf_outlen() macro sets the key derivation
       function	output length to len for DH key	derivation.

       The EVP_PKEY_CTX_get_dh_kdf_outlen() macro gets the key derivation
       function	output length for ctx used for DH key derivation.

       The EVP_PKEY_CTX_set0_dh_kdf_ukm() macro	sets the user key material to
       ukm and its length to len for DH	key derivation.	This parameter is
       optional	and corresponds	to the partyAInfo field	in RFC2631 terms. The
       specification requires that it is 512 bits long but this	is not
       enforced	by OpenSSL.  The library takes ownership of the	user key
       material	so the caller should not free the original memory pointed to
       by ukm.

       The EVP_PKEY_CTX_get0_dh_kdf_ukm() macro	gets the user key material for
       ctx.  The return	value is the user key material length. The resulting
       pointer is owned	by the library and should not be freed by the caller.

   EC parameters
       The EVP_PKEY_CTX_set_ec_paramgen_curve_nid() sets the EC	curve for EC
       parameter generation to nid. For	EC parameter generation	this macro
       must be called or an error occurs because there is no default curve.
       This function can also be called	to set the curve explicitly when
       generating an EC	key.

       The EVP_PKEY_CTX_set_ec_param_enc() macro sets the EC parameter
       encoding	to param_enc when generating EC	parameters or an EC key. The
       encoding	can be OPENSSL_EC_EXPLICIT_CURVE for explicit parameters (the
       default in versions of OpenSSL before 1.1.0) or OPENSSL_EC_NAMED_CURVE
       to use named curve form.	 For maximum compatibility the named curve
       form should be used. Note: the OPENSSL_EC_NAMED_CURVE value was added
       in OpenSSL 1.1.0; previous versions should use 0	instead.

   ECDH	parameters
       The EVP_PKEY_CTX_set_ecdh_cofactor_mode() macro sets the	cofactor mode
       to cofactor_mode	for ECDH key derivation. Possible values are 1 to
       enable cofactor key derivation, 0 to disable it and -1 to clear the
       stored cofactor mode and	fallback to the	private	key cofactor mode.

       The EVP_PKEY_CTX_get_ecdh_cofactor_mode() macro returns the cofactor
       mode for	ctx used for ECDH key derivation. Possible values are 1	when
       cofactor	key derivation is enabled and 0	otherwise.

   ECDH	key derivation function	parameters
       The EVP_PKEY_CTX_set_ecdh_kdf_type() macro sets the key derivation
       function	type to	kdf for	ECDH key derivation. Possible values are
       EVP_PKEY_ECDH_KDF_NONE and EVP_PKEY_ECDH_KDF_X9_63 which	uses the key
       derivation specified in X9.63.  When using key derivation, the kdf_md
       and kdf_outlen parameters must also be specified.

       The EVP_PKEY_CTX_get_ecdh_kdf_type() macro returns the key derivation
       function	type for ctx used for ECDH key derivation. Possible values are
       EVP_PKEY_ECDH_KDF_NONE and EVP_PKEY_ECDH_KDF_X9_63.

       The EVP_PKEY_CTX_set_ecdh_kdf_md() macro	sets the key derivation
       function	message	digest to md for ECDH key derivation. Note that	X9.63
       specifies that this digest should be SHA1 but OpenSSL tolerates other
       digests.

       The EVP_PKEY_CTX_get_ecdh_kdf_md() macro	gets the key derivation
       function	message	digest for ctx used for	ECDH key derivation.

       The EVP_PKEY_CTX_set_ecdh_kdf_outlen() macro sets the key derivation
       function	output length to len for ECDH key derivation.

       The EVP_PKEY_CTX_get_ecdh_kdf_outlen() macro gets the key derivation
       function	output length for ctx used for ECDH key	derivation.

       The EVP_PKEY_CTX_set0_ecdh_kdf_ukm() macro sets the user	key material
       to ukm for ECDH key derivation. This parameter is optional and
       corresponds to the shared info in X9.63 terms. The library takes
       ownership of the	user key material so the caller	should not free	the
       original	memory pointed to by ukm.

       The EVP_PKEY_CTX_get0_ecdh_kdf_ukm() macro gets the user	key material
       for ctx.	 The return value is the user key material length. The
       resulting pointer is owned by the library and should not	be freed by
       the caller.

   Other parameters
       The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
       EVP_PKEY_CTX_get1_id_len() macros are used to manipulate	the special
       identifier field	for specific signature algorithms such as SM2. The
       EVP_PKEY_CTX_set1_id() sets an ID pointed by id with the	length id_len
       to the library. The library takes a copy	of the id so that the caller
       can safely free the original memory pointed to by id. The
       EVP_PKEY_CTX_get1_id_len() macro	returns	the length of the ID set via a
       previous	call to	EVP_PKEY_CTX_set1_id().	The length is usually used to
       allocate	adequate memory	for further calls to EVP_PKEY_CTX_get1_id().
       The EVP_PKEY_CTX_get1_id() macro	returns	the previously set ID value to
       caller in id. The caller	should allocate	adequate memory	space for the
       id before calling EVP_PKEY_CTX_get1_id().

RETURN VALUES
       EVP_PKEY_CTX_ctrl() and its macros return a positive value for success
       and 0 or	a negative value for failure. In particular a return value of
       -2 indicates the	operation is not supported by the public key
       algorithm.

SEE ALSO
       EVP_PKEY_CTX_new(3), EVP_PKEY_encrypt(3), EVP_PKEY_decrypt(3),
       EVP_PKEY_sign(3), EVP_PKEY_verify(3), EVP_PKEY_verify_recover(3),
       EVP_PKEY_derive(3), EVP_PKEY_keygen(3)

HISTORY
       The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
       EVP_PKEY_CTX_get1_id_len() macros were added in 1.1.1, other functions
       were added in OpenSSL 1.0.0.

COPYRIGHT
       Copyright 2006-2020 The OpenSSL Project Authors.	All Rights Reserved.

       Licensed	under the OpenSSL license (the "License").  You	may not	use
       this file except	in compliance with the License.	 You can obtain	a copy
       in the file LICENSE in the source distribution or at
       <https://www.openssl.org/source/license.html>.

1.1.1k				  2021-03-25		  EVP_PKEY_CTX_CTRL(3)

NAME | SYNOPSIS | DESCRIPTION | RETURN VALUES | SEE ALSO | HISTORY | COPYRIGHT

Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=EVP_PKEY_CTX_ctrl&sektion=3ossl&manpath=FreeBSD+13.0-RELEASE+and+Ports>

home | help