FreeBSD Manual Pages
gesolve(1) Utility Commands gesolve(1) NAME gesolve - eigensolver for generalized eigenvalue problems SYNOPSIS gesolve matrix_a_filename matrix_b_filename evalues_filename evec- tors_filename residuals_filename iters_filename [options] DESCRIPTION This program inputs the matrix data from matrix_a_filename ma- trix_b_filename, and solves the generalized eigenvalue problem A*x = l*B*x with the solver specified by options. It outputs the specified number of eigenvalues, the number of which is given by option -ss, to evalues_filename and the associated eigenvectors, residual norms, and numbers of iterations to evectors_filename, residuals_filename, and iters_filename respectively in the extended Matrix Market format (see Appendix of Lis User Guide). Both the Matrix Market format and the Har- well-Boeing format are supported for the matrix filenames. OPTIONS The following options are supported: -e eigensolver The following options are supported for eigensolver: -e {gpi|9} Generalized Power -e {gii|10} Generalized Inverse -e {grqi|11} Generalized Rayleigh Quotient -e {gcg|12} Generalized CR -e {gcr|13} Generalized CR -e {gsi|14} Generalized Subspace -ss [1] The size of the subspace -e {gli|15} Generalized Lanczos -ss [1] The size of the subspace -e {gai|16} Generalized Arnoldi -ss [1] The size of the subspace -i linear solver The following options are supported for inner linear solver: -i {cg|1} CG -i {bicg|2} BiCG -i {cgs|3} CGS -i {bicgstab|4} BiCGSTAB -i {bicgstabl|5} BiCGSTAB(l) -ell [2] The degree l -i {gpbicg|6} GPBiCG -i {tfqmr|7} TFQMR -i {orthomin|8} Orthomin(m) -restart [40] The restart value m -i {gmres|9} GMRES(m) -restart [40] The restart value m -i {jacobi|10} Jacobi -i {gs|11} Gauss-Seidel -i {sor|12} SOR -omega [1.9] The relaxation coefficient omega (0<omega<2) -i {bicgsafe|13} BiCGSafe -i {cr|14} CR -i {bicr|15} BiCR -i {crs|16} CRS -i {bicrstab|17} BiCRSTAB -i {gpbicr|18} GPBiCR -i {bicrsafe|19} BiCRSafe -i {fgmres|20} FGMRES(m) -restart [40] The restart value m -i {idrs|21} IDR(s) -irestart [2] The restart value s -i {idr1|22} IDR(1) -i {minres|23} MINRES -i {cocg|24} COCG -i {cocr|25} COCR -p preconditioner The following options are supported for preconditioner: -p {none|0} None -p {jacobi|1} Jacobi -p {ilu|2} ILU(k) -ilu_fill [0] The fill level k -p {ssor|3} SSOR -ssor_omega [1.0] The relaxation coefficient omega (0<omega<2) -p {hybrid|4} Hybrid -hybrid_i [sor] The linear solver -hybrid_maxiter [25] The maximum number of the iterations -hybrid_tol [1.0e-3] The convergence criterion -hybrid_omega [1.5] The relaxation coefficient omega of the SOR (0<omega<2) -hybrid_ell [2] The degree l of the BiCGSTAB(l) -hybrid_restart [40] The restart values of the GMRES and Orthomin -p {is|5} I+S -is_alpha [1.0] The parameter alpha of I+alpha*S(m) -is_m [3] The parameter m of I+alpha*S(m) -p {sainv|6} SAINV -sainv_drop [0.05] The drop criterion -p {saamg|7} SA-AMG -saamg_unsym [false] Select the unsymmetric version (The matrix struc- ture must be symmetric) -saamg_theta [0.05|0.12] The drop criterion -p {iluc|8} Crout ILU -iluc_drop [0.05] The drop criterion -iluc_rate [5.0] The ration of maximum fill-in -p {ilut|9} ILUT -ilut_drop [0.05] The drop criterion -ilut_rate [5.0] The ration of maximum fill-in -adds true Additive Schwarz -adds_iter [1] The number of the iteration Other Options for eigensolver: -emaxiter [1000] The maximum number of the iterations -etol [1.0e-12] The convergence criterion -eprint [0] The output of the residual history -eprint {none|0} None -eprint {mem|1} Save the residual history -eprint {out|2} Output it to the standard output -eprint {all|3} Save the residual history and output it to the standard output -ige [gii] The inner eigensolver used in generalized Subspace, generalized Lanczos, and generalized Arnoldi -shift [0.0] The amount of the shift -initx_ones [true] The behavior of the initial vector x_0 -initx_ones {false|0} Given values -initx_ones {true|1} All values are set to 1 -omp_num_threads [t] The number of the threads (t represents the maximum number of the threads) -estorage [0] The matrix storage format -estorage_block [2] The block size of the BSR and BSC formats -ef [0] The precision of the eigensolver -ef {double|0} Double precision -ef {quad|1} Double-double (quadruple) precision Other options for inner linear solver: -maxiter [1000] The maximum number of the iterations -tol [1.0e-12] The convergence criterion -print [0] The output of the residual history -print {none|0} None -print {mem|1} Save the residual history -print {out|2} Output it to the standard output -print {all|3} Save the residual history and output it to the standard output -scale [0] The scaling -scale {none|0} No scaling -scale {jacobi|1} The Jacobi scaling -scale {symm_diag|2} The diagonal scaling -initx_zeros [true] The behavior of the initial vector x_0 -initx_zero {false|0} Given values -initx_zero {true|1} All values are set to 0 -omp_num_threads [t] The number of the threads (t represents the maximum number of the threads) -storage [0] The matrix storage format -storage_block [2] The block size of the BSR and BSC formats -f [0] The precision of the linear solver -f {double|0} Double precision -f {quad|1} Double-double (quadruple) precision See Lis User Guide for full description. EXIT STATUS The following exit values are returned: 0 The process is normally terminated unspecified An error occurred SEE ALSO lis(3), lsolve(1), hpcg_kernel(1), hpcg_spmvtest(1), spmvtest1(1), sp- mvtest2(1), spmvtest2b(1), spmvtest3(1), spmvtest3b(1), spmvtest4(1), spmvtest5(1) http://www.ssisc.org/lis/ http://math.nist.gov/MatrixMarket/ Man Page 4 Nov 2017 gesolve(1)
NAME | SYNOPSIS | DESCRIPTION | OPTIONS | EXIT STATUS | SEE ALSO
Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=gesolve&sektion=1&manpath=FreeBSD+13.0-RELEASE+and+Ports>