Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
KSE(2)			    BSD	System Calls Manual			KSE(2)

NAME
     kse -- kernel support for user threads

LIBRARY
     Standard C	Library	(libc, -lc)

SYNOPSIS
     #include <sys/types.h>
     #include <sys/kse.h>

     int
     kse_create(struct kse_mailbox *mbx, int newgroup);

     int
     kse_exit(void);

     int
     kse_release(struct	timespec *timeout);

     int
     kse_switchin(mcontext_t *mcp, long	val, long *loc);

     int
     kse_thr_interrupt(struct kse_thr_mailbox *tmbx);

     int
     kse_wakeup(struct kse_mailbox *mbx);

DESCRIPTION
     These system calls	implement kernel support for multi-threaded processes.

   Overview
     Traditionally, user threading has been implemented	in one of two ways:
     either all	threads	are managed in user space and the kernel is unaware of
     any threading (also known as "N to	1"), or	else separate processes	shar-
     ing a common memory space are created for each thread (also known as "N
     to	N").  These approaches have advantages and disadvantages:

     User threading		       Kernel threading
     + Lightweight		       - Heavyweight
     + User controls scheduling	       - Kernel	controls scheduling
     - Syscalls	must be	wrapped	       + No syscall wrapping required
     - Cannot utilize multiple CPUs    + Can utilize multiple CPUs

     The KSE system is a hybrid	approach that achieves the advantages of both
     the user and kernel threading approaches.	The underlying philosophy of
     the KSE system is to give kernel support for user threading without tak-
     ing away any of the user threading	library's ability to make scheduling
     decisions.	 A kernel-to-user upcall mechanism is used to pass control to
     the user threading	library	whenever a scheduling decision needs to	be
     made.  An arbitrarily number of user threads are multiplexed onto a fixed
     number of virtual CPUs supplied by	the kernel.  This can be thought of as
     an	"N to M" threading scheme.

     Some general implications of this approach	include:

     o	 The user process can run multiple threads simultaneously on multi-
	 processor machines.  The kernel grants	the process virtual CPUs to
	 schedule as it	wishes;	these may run concurrently on real CPUs.

     o	 All operations	that block in the kernel become	asynchronous, allowing
	 the user process to schedule another thread when any thread blocks.

     o	 Multiple thread schedulers within the same process are	possible, and
	 they may operate independently	of each	other.

   Definitions
     KSE allows	a user process to have multiple	threads	of execution in	exis-
     tence at the same time, some of which may be blocked in the kernel	while
     others may	be executing or	blocked	in user	space.	A kernel scheduling
     entity (KSE) is a "virtual	CPU" granted to	the process for	the purpose of
     executing threads.	 A thread that is currently executing is always	asso-
     ciated with exactly one KSE, whether executing in user space or in	the
     kernel.  The KSE is said to be assigned to	the thread.

     The KSE becomes unassigned, and the associated thread is suspended, when
     the KSE has an associated mailbox,	(see below) the	thread has an associ-
     ated thread mailbox, (also	see below) and any of the following occurs:

     o	 The thread invokes a system call that blocks.

     o	 The thread makes any other demand of the kernel that cannot be	imme-
	 diately satisfied, e.g., touches a page of memory that	needs to be
	 fetched from disk, causing a page fault.

     o	 Another thread	that was previously blocked in the kernel completes
	 its work in the kernel	(or is interrupted) and	becomes	ready to re-
	 turn to user space, and the current thread is returning to user
	 space.

     o	 A signal is delivered to the process, and this	KSE is chosen to de-
	 liver it.

     In	other words, as	soon as	there is a scheduling decision to be made, the
     KSE becomes unassigned, because the kernel	does not presume to know how
     the process' other	runnable threads should	be scheduled.  Unassigned KSEs
     always return to user space as soon as possible via the upcall mechanism
     (described	below),	allowing the user process to decide how	that KSE
     should be utilized	next.  KSEs always complete as much work as possible
     in	the kernel before becoming unassigned.

     A KSE group is a collection of KSEs that are scheduled uniformly and
     which share access	to the same pool of threads, which are associated with
     the KSE group.  A KSE group is the	smallest entity	to which a kernel
     scheduling	priority may be	assigned.  For the purposes of process sched-
     uling and accounting, each	KSE group counts similarly to a	traditional
     unthreaded	process.  Individual KSEs within a KSE group are effectively
     indistinguishable,	and any	KSE in a KSE group may be assigned by the ker-
     nel to any	runnable (in the kernel) thread	associated with	that KSE
     group.  In	practice, the kernel attempts to preserve the affinity between
     threads and actual	CPUs to	optimize cache behavior, but this is invisible
     to	the user process.  (Affinity is	not yet	implemented.)

     Each KSE has a unique KSE mailbox supplied	by the user process.  A	mail-
     box consists of a control structure containing a pointer to an upcall
     function and a user stack.	 The KSE invokes this function whenever	it be-
     comes unassigned.	The kernel updates this	structure with information
     about threads that	have become runnable and signals that have been	deliv-
     ered before each upcall.  Upcalls may be temporarily blocked by the user
     thread scheduling code during critical sections.

     Each user thread has a unique thread mailbox as well.  Threads are	re-
     ferred to using pointers to these mailboxes when communicating between
     the kernel	and the	user thread scheduler.	Each KSE's mailbox contains a
     pointer to	the mailbox of the user	thread that the	KSE is currently exe-
     cuting.  This pointer is saved when the thread blocks in the kernel.

     Whenever a	thread blocked in the kernel is	ready to return	to user	space,
     it	is added to the	KSE group's list of completed threads.	This list is
     presented to the user code	at the next upcall as a	linked list of thread
     mailboxes.

     There is a	kernel-imposed limit on	the number of threads in a KSE group
     that may be simultaneously	blocked	in the kernel (this number is not cur-
     rently visible to the user).  When	this limit is reached, upcalls are
     blocked and no work is performed for the KSE group	until one of the
     threads completes (or a signal is received).

   Managing KSEs
     To	become multi-threaded, a process must first invoke kse_create().  The
     kse_create() system call creates a	new KSE	(except	for the	very first in-
     vocation; see below).  The	KSE will be associated with the	mailbox
     pointed to	by mbx.	 If newgroup is	non-zero, a new	KSE group is also cre-
     ated containing the KSE.  Otherwise, the new KSE is added to the current
     KSE group.	 Newly created KSEs are	initially unassigned; therefore, they
     will upcall immediately.

     Each process initially has	a single KSE in	a single KSE group executing a
     single user thread.  Since	the KSE	does not have an associated mailbox,
     it	must remain assigned to	the thread and does not	perform	any upcalls.
     The result	is the traditional, unthreaded mode of operation.  Therefore,
     as	a special case,	the first call to kse_create() by this initial thread
     with newgroup equal to zero does not create a new KSE; instead, it	simply
     associates	the current KSE	with the supplied KSE mailbox, and no immedi-
     ate upcall	results.  However, an upcall will be triggered the next	time
     the thread	blocks and the required	conditions are met.

     The kernel	does not allow more KSEs to exist in a KSE group than the num-
     ber of physical CPUs in the system	(this number is	available as the
     sysctl(3) variable	hw.ncpu).  Having more KSEs than CPUs would not	add
     any value to the user process, as the additional KSEs would just compete
     with each other for access	to the real CPUs.  Since the extra KSEs	would
     always be side-lined, the result to the application would be exactly the
     same as having fewer KSEs.	 There may however be arbitrarily many user
     threads, and it is	up to the user thread scheduler	to handle mapping the
     application's user	threads	onto the available KSEs.

     The kse_exit() system call	causes the KSE assigned	to the currently run-
     ning thread to be destroyed.  If this KSE is the last one in the KSE
     group, there must be no remaining threads associated with the KSE group
     blocked in	the kernel.  This system call does not return unless there is
     an	error.

     As	a special case,	if the last remaining KSE in the last remaining	KSE
     group invokes this	system call, then the KSE is not destroyed; instead,
     the KSE just looses the association with its mailbox and kse_exit() re-
     turns normally.  This returns the process to its original,	unthreaded
     state.  (This is not yet implemented.)

     The kse_release() system call is used to "park" the KSE assigned to the
     currently running thread when it is not needed, e.g., when	there are more
     available KSEs than runnable user threads.	 The thread converts to	an up-
     call but does not get scheduled until there is a new reason to do so,
     e.g., a previously	blocked	thread becomes runnable, or the	timeout	ex-
     pires.  If	successful, kse_release() does not return to the caller.

     The kse_switchin()	system call can	be used	by the UTS, when it has	se-
     lected a new thread, to switch to the context of that thread.  The	use of
     kse_switchin() is machine dependent.  Some	platforms do not need a	system
     call to switch to a new context, while others require its use in particu-
     lar cases.

     The kse_wakeup() system call is the opposite of kse_release().  It	causes
     the (parked) KSE associated with the mailbox pointed to by	mbx to be wo-
     ken up, causing it	to upcall.  If the KSE has already woken up for	an-
     other reason, this	system call has	no effect.  The	mbx argument may be
     NULL to specify "any KSE in the current KSE group".

     The kse_thr_interrupt() system call is used to interrupt a	currently
     blocked thread.  The thread must either be	blocked	in the kernel or as-
     signed to a KSE (i.e., executing).	 The thread is then marked as inter-
     rupted.  As soon as the thread invokes an interruptible system call (or
     immediately for threads already blocked in	one), the thread will be made
     runnable again, even though the kernel operation may not have completed.
     The effect	on the interrupted system call is the same as if it had	been
     interrupted by a signal; typically	this means an error is returned	with
     errno set to EINTR.

   Signals
     When a process has	at least one KSE with an associated mailbox, then sig-
     nals might	no longer be delivered on the process stack.  Instead, signals
     may be delivered via upcalls.  Multiple signals may be delivered with one
     upcall.  (This feature is not yet coded.)

     If	there are multiple KSE groups in the process, which KSE	group is cho-
     sen to deliver the	signal is indeterminate.

   KSE Mailboxes
     Each KSE has a unique mailbox for user-kernel communication:

     /*	Upcall function	type */
     typedef void    kse_func_t(struct kse_mailbox *);

     /*	KSE mailbox */
     struct kse_mailbox	{
	     int		     km_version;     /*	Mailbox	version	*/
	     struct kse_thr_mailbox  *km_curthread;  /*	Current	thread */
	     struct kse_thr_mailbox  *km_completed;  /*	Completed threads */
	     sigset_t		     km_sigscaught;  /*	Caught signals */
	     unsigned int	     km_flags;	     /*	KSE flags */
	     kse_func_t		     *km_func;	     /*	UTS function */
	     stack_t		     km_stack;	     /*	UTS context */
	     void		     *km_udata;	     /*	For use	by the UTS */
	     struct timespec	     km_timeofday;   /*	Time of	upcall */
     };

     km_version	describes the version of this structure	and must be equal to
     KSE_VER_0.	 km_udata is an	opaque pointer ignored by the kernel.

     km_func points to the KSE's upcall	function; it will be invoked using
     km_stack, which must remain valid for the lifetime	of the KSE.

     km_curthread always points	to the thread that is currently	assigned to
     this KSE if any, or NULL otherwise.  This field is	modified by both the
     kernel and	the user process as follows.

     When km_curthread is not NULL, it is assumed to be	pointing at the	mail-
     box for the currently executing thread, and the KSE may be	unassigned,
     e.g., if the thread blocks	in the kernel.	The kernel will	then save the
     contents of km_curthread with the blocked thread, set km_curthread	to
     NULL, and upcall to invoke	km_func().

     When km_curthread is NULL,	the kernel will	never perform any upcalls with
     this KSE; in other	words, the KSE remains assigned	to the thread even if
     it	blocks.	 km_curthread must be NULL while the KSE is executing critical
     user thread scheduler code	that would be disrupted	by an intervening up-
     call; in particular, while	km_func() itself is executing.

     Before invoking km_func() in any upcall, the kernel always	sets
     km_curthread to NULL.  Once the user thread scheduler has chosen a	new
     thread to run, it should point km_curthread at the	thread's mailbox, re-
     enabling upcalls, and then	resume the thread.  Note: modification of
     km_curthread by the user thread scheduler must be atomic with the loading
     of	the context of the new thread, to avoid	the situation where the	thread
     context area may be modified by a blocking	async operation, while there
     is	still valid information	to be read out of it.

     km_completed points to a linked list of user threads that have completed
     their work	in the kernel since the	last upcall.  The user thread sched-
     uler should put these threads back	into its own runnable queue.  Each
     thread in a KSE group that	completes a kernel operation (synchronous or
     asynchronous) that	results	in an upcall is	guaranteed to be linked	into
     exactly one KSE's km_completed list; which	KSE in the group, however, is
     indeterminate.  Furthermore, the completion will be reported in only one
     upcall.

     km_sigscaught contains the	list of	signals	caught by this process since
     the previous upcall to any	KSE in the process.  As	long as	there exists
     one or more KSEs with an associated mailbox in the	user process, signals
     are delivered this	way rather than	the traditional	way.  (This has	not
     been implemented and may change.)

     km_timeofday is set by the	kernel to the current system time before per-
     forming each upcall.

     km_flags may contain any of the following bits OR'ed together:

	     (No flags are defined yet.)

   Thread Mailboxes
     Each user thread must have	associated with	it a unique struct
     kse_thr_mailbox:

     /*	Thread mailbox */
     struct kse_thr_mailbox {
	     ucontext_t		     tm_context;     /*	User thread context */
	     unsigned int	     tm_flags;	     /*	Thread flags */
	     struct kse_thr_mailbox  *tm_next;	     /*	Next thread in list */
	     void		     *tm_udata;	     /*	For use	by the UTS */
	     unsigned int	     tm_uticks;	     /*	User time counter */
	     unsigned int	     tm_sticks;	     /*	Kernel time counter */
     };

     tm_udata is an opaque pointer ignored by the kernel.

     tm_context	stores the context for the thread when the thread is blocked
     in	user space.  This field	is also	updated	by the kernel before a com-
     pleted thread is returned to the user thread scheduler via	km_completed.

     tm_next links the km_completed threads together when returned by the ker-
     nel with an upcall.  The end of the list is marked	with a NULL pointer.

     tm_uticks and tm_sticks are time counters for user	mode and kernel	mode
     execution,	respectively.  These counters count ticks of the statistics
     clock (see	clocks(7)).  While any thread is actively executing in the
     kernel, the corresponding tm_sticks counter is incremented.  While	any
     KSE is executing in user space and	that KSE's km_curthread	pointer	is not
     equal to NULL, the	corresponding tm_uticks	counter	is incremented.

     tm_flags may contain any of the following bits OR'ed together:

	     (No flags are defined yet.)

RETURN VALUES
     The kse_create(), kse_wakeup(), and kse_thr_interrupt() system calls re-
     turn zero if successful.  The kse_exit() and kse_release()	system calls
     do	not return if successful.

     All of these system calls return a	non-zero error code in case of an er-
     ror.

ERRORS
     The kse_create() system call will fail if:

     [ENXIO]		There are already as many KSEs in the KSE group	as
			hardware processors.

     [EAGAIN]		The system-imposed limit on the	total number of	KSE
			groups under execution would be	exceeded.  The limit
			is given by the	sysctl(3) MIB variable KERN_MAXPROC.
			(The limit is actually ten less	than this except for
			the super user.)

     [EAGAIN]		The user is not	the super user,	and the	system-imposed
			limit on the total number of KSE groups	under execu-
			tion by	a single user would be exceeded.  The limit is
			given by the sysctl(3) MIB variable
			KERN_MAXPROCPERUID.

     [EAGAIN]		The user is not	the super user,	and the	soft resource
			limit corresponding to the resource argument
			RLIMIT_NPROC would be exceeded (see getrlimit(2)).

     [EFAULT]		The mbx	argument points	to an address which is not a
			valid part of the process address space.

     The kse_exit() system call	will fail if:

     [EDEADLK]		The current KSE	is the last in its KSE group and there
			are still one or more threads associated with the KSE
			group blocked in the kernel.

     [ESRCH]		The current KSE	has no associated mailbox, i.e., the
			process	is operating in	traditional, unthreaded	mode
			(in this case use _exit(2) to exit the process).

     The kse_release() system call will	fail if:

     [ESRCH]		The current KSE	has no associated mailbox, i.e., the
			process	is operating is	traditional, unthreaded	mode.

     The kse_wakeup() system call will fail if:

     [ESRCH]		The mbx	argument is not	NULL and the mailbox pointed
			to by mbx is not associated with any KSE in the
			process.

     [ESRCH]		The mbx	argument is NULL and the current KSE has no
			associated mailbox, i.e., the process is operating in
			traditional, unthreaded	mode.

     The kse_thr_interrupt() system call will fail if:

     [ESRCH]		The thread corresponding to tmbx is neither currently
			assigned to any	KSE in the process nor blocked in the
			kernel.

SEE ALSO
     rfork(2), pthread(3), ucontext(3)

     Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M.
     Levy, "Scheduler activations: effective kernel support for	the user-level
     management	of parallelism", ACM Press, ACM	Transactions on	Computer
     Systems, Issue 1, Volume 10, pp. 53-79, February 1992.

HISTORY
     The KSE system calls first	appeared in FreeBSD 5.0.

AUTHORS
     KSE was originally	implemented by Julian Elischer <julian@FreeBSD.org>,
     with additional contributions by Jonathan Mini <mini@FreeBSD.org>,	Daniel
     Eischen <deischen@FreeBSD.org>, and David Xu <davidxu@FreeBSD.org>.

     This manual page was written by Archie Cobbs <archie@FreeBSD.org>.

BUGS
     The KSE code is currently under development.

BSD			      September	10, 2002			   BSD

NAME | LIBRARY | SYNOPSIS | DESCRIPTION | RETURN VALUES | ERRORS | SEE ALSO | HISTORY | AUTHORS | BUGS

Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=kse&sektion=2&manpath=FreeBSD+5.3-RELEASE>

home | help