Skip site navigation (1)Skip section navigation (2)

FreeBSD Manual Pages

  
 
  

home | help
LSOF(8)			    System Manager's Manual		       LSOF(8)

NAME
       lsof - list open	files

SYNOPSIS
       lsof  [	-?abChlnNOPQRtUvVX  ]  [ -A A ]	[ -c c ] [ +c c	] [ +|-d d ] [
       +|-D D ]	[ +|-e s ] [ +|-E ] [ +|-f [cfgGn] ] [ -F [f] ]	[ -g [s]  ]  [
       -i  [i] ] [ -k k	] [ -K k ] [ +|-L [l] ]	[ +|-m m ] [ +|-M ] [ -o [o] ]
       [ -p s ]	[ +|-r [t[m_fmt_]] ] [ -s [p:s]	] [ -S [t] ] [ -T [t] ]	[ -u s
       ] [ +|-w	] [ -x [fl] ] [	-z [z] ] [ -Z [Z] ] [ -- ] [names]

DESCRIPTION
       Lsof  revision  4.96.5  lists  on  its standard output file information
       about files opened by processes for the following UNIX dialects:

	    Apple Darwin 9 and Mac OS X	10.[567]
	    FreeBSD 8.[234], 9.0 and 1[012].0 for AMD64-based systems
	    Linux 2.1.72 and above for x86-based systems
	    Solaris 9, 10 and 11

       (See the	DISTRIBUTION section of	this manual page  for  information  on
       how to obtain the latest	lsof revision.)

       An  open	file may be a regular file, a directory, a block special file,
       a character special file, an executing text  reference,	a  library,  a
       stream  or  a  network  file  (Internet socket, NFS file	or UNIX	domain
       socket.)	 A specific file or all	the files in a file system may be  se-
       lected by path.

       Instead	of  a  formatted display, lsof will produce output that	can be
       parsed by other programs.  See the -F, option description, and the OUT-
       PUT FOR OTHER PROGRAMS section for more information.

       In  addition to producing a single output list, lsof will run in	repeat
       mode.  In repeat	mode it	will produce output, delay,  then  repeat  the
       output  operation  until	stopped	with an	interrupt or quit signal.  See
       the +|-r	[t[m_fmt_]] option description for more	information.

OPTIONS
       In the absence of any options, lsof lists all open files	 belonging  to
       all active processes.

       If  any	list  request option is	specified, other list requests must be
       specifically requested -	e.g., if -U is specified for  the  listing  of
       UNIX  socket  files, NFS	files won't be listed unless -N	is also	speci-
       fied; or	if a user list is specified with the -u	 option,  UNIX	domain
       socket  files,  belonging to users not in the list, won't be listed un-
       less the	-U option is also specified.

       Normally, list options that are specifically stated are	ORed  -	 i.e.,
       specifying  the	-i option without an address and the -ufoo option pro-
       duces a listing of all network files OR files  belonging	 to  processes
       owned by	user ``foo''.  The exceptions are:

       1) the `^' (negated) login name or user ID (UID), specified with	the -u
	  option;

       2) the `^' (negated) process ID (PID), specified	with the -p option;

       3) the `^' (negated) process group ID (PGID), specified with the	-g op-
	  tion;

       4) the `^' (negated) command, specified with the	-c option;

       5) the  (`^')  negated  TCP or UDP protocol state names,	specified with
	  the -s [p:s] option.

       Since they represent exclusions,	they are applied without ORing or AND-
       ing and take effect before any other selection criteria are applied.

       The -a option may be used to AND	the selections.	 For example, specify-
       ing -a, -U, and -ufoo produces a	listing	of only	UNIX socket files that
       belong to processes owned by user ``foo''.

       Caution:	 the  -a option	causes all list	selection options to be	ANDed;
       it can't	be used	to cause ANDing	of selected pairs of selection options
       by  placing it between them, even though	its placement there is accept-
       able.  Wherever -a is placed, it	causes the ANDing of all selection op-
       tions.

       Items of	the same selection set - command names,	file descriptors, net-
       work addresses, process identifiers, user identifiers, zone names,  se-
       curity  contexts	 -  are	joined in a single ORed	set and	applied	before
       the result participates	in  ANDing.   Thus,  for  example,  specifying
       -i@aaa.bbb,  -i@ccc.ddd,	 -a,  and -ufff,ggg will select	the listing of
       files that belong to either login ``fff'' OR ``ggg'' AND	 have  network
       connections to either host aaa.bbb OR ccc.ddd.

       Options	may be grouped together	following a single prefix -- e.g., the
       option set ``-a -b -C'' may be stated as	-abC.  However,	 since	values
       are optional following +|-f, -F,	-g, -i,	+|-L, -o, +|-r,	-s, -S,	-T, -x
       and -z.	when you have no values	for them be careful that the following
       character isn't ambiguous.  For example,	-Fn might represent the	-F and
       -n options, or it might represent the n field identifier	character fol-
       lowing  the  -F option.	When ambiguity is possible, start a new	option
       with a `-' character - e.g., ``-F -n''.	If the next option is  a  file
       name,  follow the possibly ambiguous option with	``--'' - e.g., ``-F --
       name''.

       Either the `+' or the `-' prefix	may be applied to a group of  options.
       Options that don't take on separate meanings for	each prefix - e.g., -i
       - may be	grouped	under either prefix.  Thus, for	example, ``+M -i'' may
       be  stated  as ``+Mi'' and the group means the same as the separate op-
       tions.  Be careful of prefix grouping when one or more options  in  the
       group  does  take on separate meanings under different prefixes - e.g.,
       +|-M; ``-iM'' is	not the	same request as	``-i +M''.  When in doubt, use
       separate	options	with appropriate prefixes.

       -? -h	These  two  equivalent	options	 select	 a usage (help)	output
		list.  Lsof displays a shortened form of this output  when  it
		detects	 an  error in the options supplied to it, after	it has
		displayed messages explaining each  error.   (Escape  the  `?'
		character as your shell	requires.)

       -a	causes list selection options to be ANDed, as described	above.

       -A A	is  available  on  systems configured for AFS whose AFS	kernel
		code is	implemented via	dynamic	modules.  It allows  the  lsof
		user  to  specify  A  as an alternate name list	file where the
		kernel addresses of the	dynamic	modules	might be  found.   See
		the  lsof  FAQ (The FAQ	section	gives its location.)  for more
		information about dynamic modules, their symbols, and how they
		affect lsof.

       -b	causes	lsof  to  avoid	 kernel	 functions  that might block -
		lstat(2), readlink(2), and stat(2).

		See the	BLOCKS AND TIMEOUTS and	AVOIDING  KERNEL  BLOCKS  sec-
		tions for information on using this option.

       -c c	selects	 the listing of	files for processes executing the com-
		mand that begins with the characters of	c.  Multiple  commands
		may  be	specified, using multiple -c options.  They are	joined
		in a single ORed set before participating in AND option	selec-
		tion.

		If  c begins with a `^', then the following characters specify
		a command name whose processes are to be ignored (excluded.)

		If c begins and	ends with a slash ('/'),  the  characters  be-
		tween  the  slashes  are  interpreted as a regular expression.
		Shell meta-characters in the regular expression	must be	quoted
		to  prevent  their  interpretation  by the shell.  The closing
		slash may be followed by these modifiers:

		     b	  the regular expression is a basic one.
		     i	  ignore the case of letters.
		     x	  the regular expression is an extended	one
			  (default).

		See the	lsof FAQ (The FAQ section gives	 its  location.)   for
		more information on basic and extended regular expressions.

		The  simple  command  specification  is	tested first.  If that
		test fails, the	command	regular	expression is applied.	If the
		simple	command	 test succeeds,	the command regular expression
		test isn't made.  This may result in ``no  command  found  for
		regex:'' messages when lsof's -V option	is specified.

       +c w	defines	 the maximum number of initial characters of the name,
		supplied by the	UNIX dialect, of the UNIX  command  associated
		with a process to be printed in	the COMMAND column.  (The lsof
		default	is nine.)

		Note that many UNIX dialects do	not supply  all	 command  name
		characters to lsof in the files	and structures from which lsof
		obtains	command	name.  Often  dialects	limit  the  number  of
		characters  supplied  in  those	 sources.   For	example, Linux
		2.4.27 and Solaris 9 both limit	 command  name	length	to  16
		characters.

		If w is	zero ('0'), all	command	characters supplied to lsof by
		the UNIX dialect will be printed.

		If w is	less than the length of	the column title, ``COMMAND'',
		it will	be raised to that length.

       -C	disables  the  reporting  of any path name components from the
		kernel's name cache.  See the KERNEL NAME  CACHE  section  for
		more information.

       +d s	causes	lsof  to  search for all open instances	of directory s
		and the	files and directories it contains at  its  top	level.
		+d does	NOT descend the	directory tree,	rooted at s.  The +D D
		option may be used to request a	 full-descent  directory  tree
		search,	rooted at directory D.

		Processing  of	the  +d	 option	does not follow	symbolic links
		within s unless	the -x or -x  l	option is also specified.  Nor
		does  it  search for open files	on file	system mount points on
		subdirectories of s unless the -x or  -x   f  option  is  also
		specified.

		Note:  the  authority  of the user of this option limits it to
		searching for files that the user has  permission  to  examine
		with the system	stat(2)	function.

       -d s	specifies  a list of file descriptors (FDs) to exclude from or
		include	in the output listing.	The file descriptors are spec-
		ified  in  the	comma-separated	 set  s	 -  e.g., ``cwd,1,3'',
		``^6,^2''.  (There should be no	spaces in the set.)

		The list is an exclusion list if all entries of	the set	 begin
		with  `^'.   It	 is  an	inclusion list if no entry begins with
		`^'.  Mixed lists are not permitted.

		A file descriptor number range may be in the set  as  long  as
		neither	 member	 is  empty,  both members are numbers, and the
		ending member is larger	than the starting one -	e.g.,  ``0-7''
		or  ``3-10''.	Ranges	may be specified for exclusion if they
		have the `^' prefix - e.g., ``^0-7''  excludes	all  file  de-
		scriptors 0 through 7.

		Multiple  file	descriptor numbers are joined in a single ORed
		set before participating in AND	option selection.

		When there are exclusion and inclusion	members	 in  the  set,
		lsof  reports  them as errors and exits	with a non-zero	return
		code.

		See the	description of File Descriptor (FD) output  values  in
		the  OUTPUT  section  for  more	information on file descriptor
		names.

		fd is a	pseudo file descriptor name for	specifying  the	 whole
		range of possible file descriptor numbers.  fd does not	appear
		in FD column of	output.

       +D D	causes lsof to search for all open instances  of  directory  D
		and  all the files and directories it contains to its complete
		depth.

		Processing of the +D option does  not  follow  symbolic	 links
		within D unless	the -x or -x  l	option is also specified.  Nor
		does it	search for open	files on file system mount  points  on
		subdirectories	of  D  unless  the  -x or -x  f	option is also
		specified.

		Note: the authority of the user	of this	option	limits	it  to
		searching  for	files  that the	user has permission to examine
		with the system	stat(2)	function.

		Further	note: lsof may process this option slowly and  require
		a large	amount of dynamic memory to do it.  This is because it
		must descend the entire	directory tree,	rooted at  D,  calling
		stat(2)	 for  each  file and directory,	building a list	of all
		the files it finds, and	searching that list for	a  match  with
		every  open  file.  When directory D is	large, these steps can
		take a long time, so use this option prudently.

       -D D	directs	lsof's use of the device cache file.  The use of  this
		option	is  sometimes  restricted.   See the DEVICE CACHE FILE
		section	and the	sections that follow it	for  more  information
		on this	option.

		-D  must be followed by	a function letter; the function	letter
		may optionally be followed by a	path  name.   Lsof  recognizes
		these function letters:

		     ? - report	device cache file paths
		     b - build the device cache	file
		     i - ignore	the device cache file
		     r - read the device cache file
		     u - read and update the device cache file

		The  b,	 r,  and  u functions, accompanied by a	path name, are
		sometimes restricted.  When these  functions  are  restricted,
		they  will not appear in the description of the	-D option that
		accompanies -h or -?  option output.   See  the	 DEVICE	 CACHE
		FILE section and the sections that follow it for more informa-
		tion on	these functions	and when they're restricted.

		The ?  function	reports	the read-only  and  write  paths  that
		lsof can use for the device cache file,	the names of any envi-
		ronment	variables whose	values lsof will examine when  forming
		the  device  cache  file path, and the format for the personal
		device cache file path.	 (Escape the  `?'  character  as  your
		shell requires.)

		When  available,  the b, r, and	u functions may	be followed by
		the  device  cache  file's  path.   The	 standard  default  is
		.lsof_hostname	in the home directory of the real user ID that
		executes lsof, but this	could have been	changed	when lsof  was
		configured  and	 compiled.   (The output of the	-h and -?  op-
		tions show the current default prefix -	e.g., ``.lsof''.)  The
		suffix,	 hostname,  is	the first component of the host's name
		returned by gethostname(2).

		When available,	the b function directs lsof to build a new de-
		vice cache file	at the default or specified path.

		The i function directs lsof to ignore the default device cache
		file and obtain	its information	about devices via direct calls
		to the kernel.

		The  r	function  directs lsof to read the device cache	at the
		default	or specified path, but prevents	it from	creating a new
		device	cache file when	none exists or the existing one	is im-
		properly structured.  The r function, when specified without a
		path  name,  prevents  lsof from updating an incorrect or out-
		dated device cache file, or creating a new one in  its	place.
		The  r function	is always available when it is specified with-
		out a path name	argument; it may be restricted by the  permis-
		sions of the lsof process.

		When available,	the u function directs lsof to read the	device
		cache file at the default or specified path, if	possible,  and
		to rebuild it, if necessary.  This is the default device cache
		file function when no -D option	has been specified.

       +|-e s	exempts	the file system	whose path name	is s from  being  sub-
		jected	to kernel function calls that might block.  The	+e op-
		tion exempts stat(2), lstat(2)	and  most  readlink(2)	kernel
		function  calls.   The	-e  option  exempts  only  stat(2) and
		lstat(2) kernel	function calls.	 Multiple file systems may  be
		specified  with	separate +|-e specifications and each may have
		readlink(2) calls exempted or not.

		This option is currently implemented only for Linux.

		CAUTION: this option can easily	be mis-applied to  other  than
		the  file system of interest, because it uses path name	rather
		than the more reliable device and inode	numbers.  (Device  and
		inode  numbers	are  acquired  via  the	 potentially  blocking
		stat(2)	kernel call and	are thus not available,	 but  see  the
		+|-m  m	 option	as a possible alternative way to supply	device
		numbers.)  Use this option with	great care and	fully  specify
		the path name of the file system to be exempted.

		When  open files on exempted file systems are reported,	it may
		not be possible	to obtain all their  information.   Therefore,
		some   information  columns  will  be  blank,  the  characters
		``UNKN'' preface the values in the TYPE	column,	and the	appli-
		cable  exemption  option is added in parentheses to the	end of
		the NAME column.  (Some	device	number	information  might  be
		made available via the +|-m m option.)

       +|-E	+E specifies that Linux	pipe, Linux UNIX socket, Linux INET(6)
		socket closed in a local  host,	 Linux	pseudoterminal	files,
		POSIX  Message	Queueue	 implementation	 in  Linux,  and Linux
		eventfd	should be displayed with endpoint information and  the
		files of the endpoints should also be displayed.

		Note  1:  UNIX socket file endpoint information	is only	avail-
		able when the compile flags line of -v output contains	HASUX-
		SOCKEPT, and psudoterminal endpoint information	is only	avail-
		able when the compile flags line contains HASPTYEPT.

		Note 2:	POSIX Message Queue file endpoint information is  only
		available when mqueue file system is mounted.

		Pipe  endpoint	information is displayed in the	NAME column in
		the form ``PID,cmd,FDmode'', where PID is the endpoint process
		ID;  cmd  is  the endpoint process command; FD is the endpoint
		file's descriptor; and mode  is	 the  endpoint	file's	access
		mode.

		Pseudoterminal	endpoint  information is displayed in the NAME
		column as  ``->/dev/ptsmin PID,cmd,FDmode''  or	 ``PID,cmd,FD-
		mode''.	  The  first  form is for a master device; the second,
		for a slave device.  min is a slave device's minor device num-
		ber;  and PID, cmd, FD and mode	are the	same as	with pipe end-
		point information.  Note: psudoterminal	 endpoint  information
		is  only  available  when  the compile flags line of -V	output
		contains HASPTYEPT. In addition, this feature works  on	 Linux
		kernels	above 4.13.0.

		UNIX socket file endpoint information is displayed in the NAME
		column in the form
		``type=TYPE ->INO=INODE	PID,cmd,FDmode'', where	 TYPE  is  the
		socket	type;  INODE  is  the  i-node  number of the connected
		socket;	and PID, cmd, FD and mode are the same	as  with  pipe
		endpoint  information.	Note: UNIX socket file endpoint	infor-
		mation is available only when the compile  flags  line	of  -v
		output contains	HASUXSOCKEPT.

		INET socket file endpoint information is inserted to the value
		at the NAME column in th form
		PID, cmd, FD and mode are the same as with pipe	 endpoint  in-
		formation.  The	 endpoint information is available only	if the
		socket is used for local IPC; both endpoints bind to the  same
		local IPv4 or IPv6 address.

		POSIX  Message Queue file endpoint information is displayed in
		the NAME column	in the same form as that of pipe.

		eventfd	endpoint information is	displayed in the  NAME	column
		in  the	same form as that of pipe. This	feature	works on Linux
		kernels	above 5.2.0.

		Multiple occurrences of	 this  information  can	 appear	 in  a
		file's NAME column.

		-E specifies that endpoint supported files should be displayed
		with endpoint information, but not the files of	the endpoints.

       +|-f [cfgGn]
		f by itself clarifies how path name arguments are to be	inter-
		preted.	  When followed	by c, f, g, G, or n in any combination
		it specifies that the listing of kernel	file structure	infor-
		mation is to be	enabled	(`+') or inhibited (`-').

		Normally  a  path  name	 argument is taken to be a file	system
		name if	it matches a mounted-on	 directory  name  reported  by
		mount(8),  or  if  it  represents a block device, named	in the
		mount output and associated with  a  mounted  directory	 name.
		When +f	is specified, all path name arguments will be taken to
		be file	system names, and lsof will complain if	any  are  not.
		This  can  be  useful,	for example, when the file system name
		(mounted-on device) isn't a block device.   This  happens  for
		some CD-ROM file systems.

		When  -f  is specified by itself, all path name	arguments will
		be taken to be simple files.  Thus, for	example,  the  ``-f --
		/''  arguments direct lsof to search for open files with a `/'
		path name, not all open	files in the `/' (root)	file system.

		Be careful to make sure	+f and -f are properly terminated  and
		aren't followed	by a character (e.g., of the file or file sys-
		tem name) that might be	taken as a  parameter.	 For  example,
		use ``--'' after +f and	-f as in these examples.

		     $ lsof +f -- /file/system/name
		     $ lsof -f -- /file/name

		The  listing  of  information from kernel file structures, re-
		quested	with the +f [cfgGn] option form,  is  normally	inhib-
		ited,  and is not available in whole or	part for some dialects
		- e.g.,	/proc-based Linux kernels below	2.6.22.	 When the pre-
		fix  to	 f is a	plus sign (`+'), these characters request file
		structure information:

		     c	  file structure use count (not	Linux)
		     f	  file structure address (not Linux)
		     g	  file flag abbreviations (Linux 2.6.22	and up)

			  Abbrev.   Flag in C code (see	open(2))

			  W	    O_WRONLY
			  RW	    O_RDWR
			  CR	    O_CREAT
			  EXCL	    O_EXCL
			  NTTY	    O_NOCTTY
			  TR	    O_TRUNC
			  AP	    O_APPEND
			  ND	    O_NDELAY
			  SYN	    O_SYNC
			  ASYN	    O_ASYNC
			  DIR	    O_DIRECT
			  DTY	    O_DIRECTORY
			  NFLK	    O_NOFOLLOW
			  NATM	    O_NOATIME
			  DSYN	    O_DSYNC
			  RSYN	    O_RSYNC
			  LG	    O_LARGEFILE
			  CX	    O_CLOEXEC
			  TMPF	    O_TMPFILE

		     G	  file flags in	hexadecimal (Linux 2.6.22 and up)
		     n	  file structure node address (not Linux)

		When the prefix	is minus (`-') the same	characters disable the
		listing	of the indicated values.

		File  structure	 addresses,  use  counts,  flags, and node ad-
		dresses	may be used to detect more readily identical files in-
		herited	 by child processes and	identical files	in use by dif-
		ferent processes.  Lsof	column output can be sorted by	output
		columns	 holding  the  values and listed to identify identical
		file use, or lsof field	output can be parsed by	an AWK or Perl
		post-filter script, or by a C program.

       -F f	specifies  a  character	list, f, that selects the fields to be
		output for processing by another program,  and	the  character
		that terminates	each output field.  Each field to be output is
		specified with a single	character in f.	 The field  terminator
		defaults to NL,	but may	be changed to NUL (000).  See the OUT-
		PUT FOR	OTHER PROGRAMS section for a description of the	 field
		identification characters and the field	output process.

		When the field selection character list	is empty, all standard
		fields are selected (except the	 raw  device  field,  security
		context	 and  zone field for compatibility reasons) and	the NL
		field terminator is used.

		When the field selection character list	contains only  a  zero
		(`0'),	all  fields  are selected (except the raw device field
		for compatibility reasons) and the NUL terminator character is
		used.

		Other combinations of fields and their associated field	termi-
		nator character	must be	set with explicit entries in f,	as de-
		scribed	in the OUTPUT FOR OTHER	PROGRAMS section.

		When  a	field selection	character identifies an	item lsof does
		not normally list - e.g., PPID,	selected with -R -  specifica-
		tion of	the field character - e.g., ``-FR'' - also selects the
		listing	of the item.

		When the field selection character list	 contains  the	single
		character  `?',	 lsof  will  display  a	help list of the field
		identification characters.  (Escape the	`?' character as  your
		shell requires.)

       -g [s]	excludes  or  selects  the  listing of files for the processes
		whose optional process group IDentification (PGID) numbers are
		in  the	comma-separated	set s -	e.g., ``123'' or ``123,^456''.
		(There should be no spaces in the set.)

		PGID numbers that begin	with `^' (negation)  represent	exclu-
		sions.

		Multiple  PGID	numbers	are joined in a	single ORed set	before
		participating in AND option selection.	However,  PGID	exclu-
		sions  are applied without ORing or ANDing and take effect be-
		fore other selection criteria are applied.

		The -g option also enables the output display of PGID numbers.
		When specified without a PGID set that's all it	does.

       -i [i]	selects	 the  listing  of  files any of	whose Internet address
		matches	the address specified in i.  If	no address  is	speci-
		fied, this option selects the listing of all Internet and x.25
		(HP-UX)	network	files.

		If -i4 or -i6 is specified with	 no  following	address,  only
		files  of  the	indicated  IP  version,	IPv4 or	IPv6, are dis-
		played.	 (An IPv6 specification	may be used only  if  the  di-
		alects supports	IPv6, as indicated by ``[46]'' and ``IPv[46]''
		in lsof's -h or	-?   output.)	Sequentially  specifying  -i4,
		followed  by -i6 is the	same as	specifying -i, and vice-versa.
		Specifying -i4,	or -i6 after -i	is the same as specifying  -i4
		or -i6 by itself.

		Multiple  addresses  (up  to  a	limit of 100) may be specified
		with multiple -i options.  (A  port  number  or	 service  name
		range is counted as one	address.)  They	are joined in a	single
		ORed set before	participating in AND option selection.

		An Internet address is specified in the	form (Items in	square
		brackets are optional.):

		[46][protocol][@hostname|hostaddr][:service|port]

		where:
		     46	specifies the IP version, IPv4 or IPv6
			  that applies to the following	address.
			  '6' may be be	specified only if the UNIX
			  dialect supports IPv6.  If neither '4' nor
			  '6' is specified, the	following address
			  applies to all IP versions.
		     protocol is a protocol name - TCP,	UDP or UDPLITE.
		     hostname is an Internet host name.	 Unless	a
			  specific IP version is specified, open
			  network files	associated with	host names
			  of all versions will be selected.
		     hostaddr is a numeric Internet IPv4 address in
			  dot form; or an IPv6 numeric address in
			  colon	form, enclosed in brackets, if the
			  UNIX dialect supports	IPv6.  When an IP
			  version is selected, only its	numeric
			  addresses may	be specified.
		     service is	an /etc/services name -	e.g., smtp -
			  or a list of them.
		     port is a port number, or a list of them.

		IPv6  options  may  be	used only if the UNIX dialect supports
		IPv6.  To see if the dialect supports IPv6, run	lsof and spec-
		ify the	-h or -?  (help) option.  If the displayed description
		of the -i option contains ``[46]'' and	``IPv[46]'',  IPv6  is
		supported.

		IPv4  host names and addresses may not be specified if network
		file selection is limited to IPv6 with -i 6.  IPv6 host	 names
		and  addresses	may not	be specified if	network	file selection
		is limited to IPv4 with	-i  4.	 When  an  open	 IPv4  network
		file's	address	 is mapped in an IPv6 address, the open	file's
		type will be IPv6, not IPv4, and its display will be  selected
		by '6',	not '4'.

		At  least  one	address	 component - 4,	6, protocol, hostname,
		hostaddr, or service - must be supplied.  The  `@'  character,
		leading	 the host specification, is always required; as	is the
		`:', leading the port specification.  Specify either  hostname
		or  hostaddr.  Specify either service name list	or port	number
		list.  If a service name list is specified, the	 protocol  may
		also  need  to	be  specified if the TCP, UDP and UDPLITE port
		numbers	for the	service	name are different.  Use  any  case  -
		lower or upper - for protocol.

		Service	names and port numbers may be combined in a list whose
		entries	are separated by commas	and whose  numeric  range  en-
		tries  are separated by	minus signs.  There may	be no embedded
		spaces,	and all	service	names must  belong  to	the  specified
		protocol.   Since  service  names  may	contain	embedded minus
		signs, the starting entry of a range can't be a	service	 name;
		it can be a port number, however.

		Here are some sample addresses:

		     -i6 - IPv6	only
		     TCP:25 - TCP and port 25
		     @1.2.3.4 -	Internet IPv4 host address 1.2.3.4
		     @[3ffe:1ebc::1]:1234 - Internet IPv6 host address
			  3ffe:1ebc::1,	port 1234
		     UDP:who - UDP who service port
		     TCP@lsof.itap:513 - TCP, port 513 and host	name lsof.itap
		     tcp@foo:1-10,smtp,99 - TCP, ports 1 through 10,
			  service name smtp, port 99, host name	foo
		     tcp@bar:1-smtp - TCP, ports 1 through smtp, host bar
		     :time - either TCP, UDP or	UDPLITE	time service port

       -K k	selects	 the  listing  of tasks	(threads) of processes,	on di-
		alects where task (thread) reporting is	supported.   (If  help
		output	-  i.e.,  the  output of the -h	or -?  options - shows
		this option, then task (thread)	reporting is supported by  the
		dialect.)

		If  -K	is  followed  by  a  value, k, it must be ``i''.  That
		causes lsof to ignore  tasks,  particularly  in	 the  default,
		list-everything	case when no other options are specified.

		When -K	and -a are both	specified on Linux, and	the tasks of a
		main process are selected by other options, the	 main  process
		will  also  be	listed as though it were a task, but without a
		task ID.  (See the description of the TID column in the	OUTPUT
		section.)

		Where  the  FreeBSD version supports threads, all threads will
		be listed with their IDs.

		In general threads and tasks inherit the files of the  caller,
		but may	close some and open others, so lsof always reports all
		the open files of threads and tasks.

       -k k	specifies a kernel name	list file, k,  in  place  of  /vmunix,
		/mach,	etc.   -k  is  not  available  under  AIX  on  the IBM
		RISC/System 6000.

       -l	inhibits the conversion	of user	ID numbers to login names.  It
		is also	useful when login name lookup is working improperly or
		slowly.

       +|-L [l]	enables	(`+') or disables  (`-')  the  listing	of  file  link
		counts,	where they are available - e.g., they aren't available
		for sockets, or	most FIFOs and pipes.

		When +L	is specified without  a	 following  number,  all  link
		counts will be listed.	When -L	is specified (the default), no
		link counts will be listed.

		When +L	is followed by a number,  only	files  having  a  link
		count  less  than  that	number will be listed.	(No number may
		follow -L.)  A specification of	the form ``+L1''  will	select
		open  files  that  have	been unlinked.	A specification	of the
		form ``+aL1 _file_system_'' will select	unlinked open files on
		the specified file system.

		For  other link	count comparisons, use field output (-F) and a
		post-processing	script or program.

       +|-m m	specifies an alternate kernel memory file or  activates	 mount
		table supplement processing.

		The  option  form  -m  m specifies a kernel memory file, m, in
		place of /dev/kmem or /dev/mem - e.g., a crash dump file.

		The option form	+m requests that a mount  supplement  file  be
		written	 to  the  standard output file.	 All other options are
		silently ignored.

		There will be a	line in	the mount  supplement  file  for  each
		mounted	file system, containing	the mounted file system	direc-
		tory, followed by a single space, followed by the device  num-
		ber in hexadecimal "0x"	format - e.g.,

		     / 0x801

		Lsof  can  use the mount supplement file to get	device numbers
		for file systems  when	it  can't  get	them  via  stat(2)  or
		lstat(2).

		The option form	+m m identifies	m as a mount supplement	file.

		Note:  the  +m and +m m	options	are not	available for all sup-
		ported dialects.  Check	the output of lsof's -h	or -?  options
		to see if the +m and +m	m options are available.

       +|-M	Enables	(+) or disables	(-) the	reporting of portmapper	regis-
		trations for local TCP,	UDP and	UDPLITE	ports, where port map-
		ping is	supported.  (See the last paragraph of this option de-
		scription for information about	where portmapper  registration
		reporting is supported.)

		The default reporting mode is set by the lsof builder with the
		HASPMAPENABLED #define in the dialect's	machine.h header file;
		lsof  is  distributed  with the	HASPMAPENABLED #define deacti-
		vated, so portmapper reporting is disabled by default and must
		be requested with +M.  Specifying lsof's -h or -?  option will
		report the default mode.   Disabling  portmapper  registration
		when  it  is  already disabled or enabling it when already en-
		abled is acceptable.  When portmapper  registration  reporting
		is enabled, lsof displays the portmapper registration (if any)
		for local TCP, UDP or UDPLITE ports in square brackets immedi-
		ately  following  the  port  numbers  or service names - e.g.,
		``:1234[name]''	or ``:name[100083]''.  The registration	infor-
		mation	may  be	a name or number, depending on what the	regis-
		tering program supplied	to the portmapper when	it  registered
		the port.

		When  portmapper  registration	reporting is enabled, lsof may
		run a little more slowly or even become	blocked	when access to
		the  portmapper	becomes	congested or stopped.  Reverse the re-
		porting	mode to	determine if portmapper	registration reporting
		is slowing or blocking lsof.

		For purposes of	portmapper registration	reporting lsof consid-
		ers a TCP, UDP or UDPLITE port local if: it is	found  in  the
		local part of its containing kernel structure; or if it	is lo-
		cated in the foreign part of its containing  kernel  structure
		and  the local and foreign Internet addresses are the same; or
		if it is located in the	foreign	part of	its containing	kernel
		structure  and the foreign Internet address is INADDR_LOOPBACK
		(127.0.0.1).  This rule	may  make  lsof	 ignore	 some  foreign
		ports  on  machines  with multiple interfaces when the foreign
		Internet address is on a different interface  from  the	 local
		one.

		See  the  lsof	FAQ (The FAQ section gives its location.)  for
		further	discussion of portmapper  registration	reporting  is-
		sues.

		Portmapper  registration  reporting  is	 supported only	on di-
		alects that have RPC header files.  (Some Linux	 distributions
		with  GlibC 2.14 do not	have them.)  When portmapper registra-
		tion reporting is supported, the -h or -?   help  output  will
		show the +|-M option.

       -n	inhibits  the  conversion of network numbers to	host names for
		network	 files.	  Inhibiting  conversion  may  make  lsof  run
		faster.	  It is	also useful when host name lookup is not work-
		ing properly.

       -N	selects	the listing of NFS files.

       -o	directs	lsof to	display	file offset at all times.   It	causes
		the  SIZE/OFF  output  column  title  to be changed to OFFSET.
		Note: on some UNIX dialects lsof can't obtain accurate or con-
		sistent	 file offset information from its kernel data sources,
		sometimes just for particular kinds  of	 files	(e.g.,	socket
		files.)	 Consult the lsof FAQ (The FAQ section gives its loca-
		tion.)	for more information.

		The -o and -s options are mutually exclusive; they can't  both
		be  specified.	When neither is	specified, lsof	displays what-
		ever value - size or offset - is appropriate and available for
		the type of the	file.

       -o o	defines	 the  number of	decimal	digits (o) to be printed after
		the ``0t'' for a file offset before the	form  is  switched  to
		``0x...''.  An o value of zero (unlimited) directs lsof	to use
		the ``0t'' form	for all	offset output.

		This option does NOT direct lsof  to  display  offset  at  all
		times;	specify	-o (without a trailing number) to do that.  -o
		o only specifies the number of digits after ``0t''  in	either
		mixed  size and	offset or offset-only output.  Thus, for exam-
		ple, to	direct lsof to display offset at all times with	a dec-
		imal digit count of 10,	use:

		     -o	-o 10
		or
		     -oo10

		The  default number of digits allowed after ``0t'' is normally
		8, but may have	been changed by	the lsof builder.  Consult the
		description  of	 the -o	o option in the	output of the -h or -?
		option to determine the	default	that is	in effect.

       -O	directs	lsof to	bypass the strategy it	uses  to  avoid	 being
		blocked	by some	kernel operations - i.e., doing	them in	forked
		child processes.  See the BLOCKS  AND  TIMEOUTS	 and  AVOIDING
		KERNEL	BLOCKS	sections for more information on kernel	opera-
		tions that may block lsof.

		While use of this option will reduce lsof startup overhead, it
		may also cause lsof to hang when the kernel doesn't respond to
		a function.  Use this option cautiously.

       -p s	excludes or selects the	listing	of  files  for	the  processes
		whose optional process IDentification (PID) numbers are	in the
		comma-separated	set s -	e.g., ``123'' or ``123,^456''.	(There
		should be no spaces in the set.)

		PID  numbers  that  begin with `^' (negation) represent	exclu-
		sions.

		Multiple process ID numbers are	joined in a  single  ORed  set
		before	participating  in  AND option selection.  However, PID
		exclusions are applied without ORing or	ANDing and take	effect
		before other selection criteria	are applied.

       -P	inhibits the conversion	of port	numbers	to port	names for net-
		work files.  Inhibiting	the conversion may  make  lsof	run  a
		little faster.	It is also useful when port name lookup	is not
		working	properly.

       -Q	ignore failed search terms. When lsof is told  to  search  for
		users  of  a file, or for users	of a device, or	for a specific
		PID, or	for certain protocols in use by	that PID, and  so  on,
		lsof  will  return  an	error if any of	the search results are
		empty. The -Q option will change this behavior	so  that  lsof
		will  instead return a successful exit code (0)	even if	any of
		the search results are	empty.	In  addition,  missing	search
		terms will not be reported to stderr.

       +|-r [t[c_N_][m_fmt_]]
		puts  lsof in repeat mode.  There lsof lists open files	as se-
		lected by other	options, delays	t seconds  (default  fifteen),
		then  repeats  the  listing, delaying and listing repetitively
		until stopped by a condition defined by	the prefix to the  op-
		tion.

		If  the	prefix is a `-', repeat	mode is	endless.  Lsof must be
		terminated with	an interrupt or	quit signal.   `c<N>'  is  for
		specifying  the	 limits	 of repeating; if the number of	itera-
		tions reaches at `<N>',	Lsof stops itself.

		If the prefix is `+', repeat mode will end the first cycle  no
		open  files  are  listed  - and	of course when lsof is stopped
		with an	interrupt or quit signal.  When	repeat mode  ends  be-
		cause  no files	are listed, the	process	exit code will be zero
		if any open files were ever listed; one,  if  none  were  ever
		listed.

		Lsof  marks  the  end  of  each	listing: if field output is in
		progress (the -F, option  has  been  specified),  the  default
		marker	is  `m'; otherwise the default marker is ``========''.
		The marker is followed by a NL character.

		The optional "m<fmt>" argument	specifies  a  format  for  the
		marker	line.	The  <fmt> characters following	`m' are	inter-
		preted as a format specification to the	strftime(3)  function,
		when  both  it	and the	localtime(3) function are available in
		the dialect's C	library.  Consult the  strftime(3)  documenta-
		tion  for  what	 may appear in its format specification.  Note
		that when field	output is requested with the -F	option,	 <fmt>
		cannot	contain	 the  NL  format, ``%n''.  Note	also that when
		<fmt> contains spaces or  other	 characters  that  affect  the
		shell's	 interpretation	of arguments, <fmt> must be quoted ap-
		propriately.

		Repeat mode reduces lsof startup overhead, so it is more effi-
		cient  to  use this mode than to call lsof repetitively	from a
		shell script, for example.

		To use repeat mode most	efficiently, accompany +|-r with spec-
		ification  of  other  lsof selection options, so the amount of
		kernel memory access lsof does will be kept to a minimum.  Op-
		tions  that filter at the process level	- e.g.,	-c, -g,	-p, -u
		- are the most efficient selectors.

		Repeat mode is useful when coupled with	field output (see  the
		-F,  option description) and a supervising awk or Perl script,
		or a C program.

       -R	directs	lsof to	list the Parent	Process	IDentification	number
		in the PPID column.

       -s [p:s]	s  alone  directs  lsof	to display file	size at	all times.  It
		causes the SIZE/OFF output column title	to be changed to SIZE.
		If the file does not have a size, nothing is displayed.

		The  optional  -s  p:s form is available only for selected di-
		alects,	and only when the -h or	-?  help output	lists it.

		When the optional form is available, the s may be followed  by
		a  protocol  name  (p),	either TCP or UDP, a colon (`:') and a
		comma-separated	protocol state name list,  the	option	causes
		open  TCP  and UDP files to be excluded	if their state name(s)
		are in the list	(s) preceded by	a `^'; or  included  if	 their
		name(s)	are not	preceded by a `^'.

		Dialects  that support this option may support only one	proto-
		col.  When an unsupported protocol  is	specified,  a  message
		will  be displayed indicating state names for the protocol are
		unavailable.

		When an	inclusion list is defined,  only  network  files  with
		state  names  in  the list will	be present in the lsof output.
		Thus, specifying one state name	means that only	network	 files
		with that lone state name will be listed.

		Case  is unimportant in	the protocol or	state names, but there
		may be no spaces and the colon (`:') separating	 the  protocol
		name (p) and the state name list (s) is	required.

		If  only  TCP and UDP files are	to be listed, as controlled by
		the specified exclusions and inclusions, the -i	option must be
		specified,  too.   If only a single protocol's files are to be
		listed,	add its	name as	an argument to the -i option.

		For example, to	list only network files	with TCP state LISTEN,
		use:

		     -iTCP -sTCP:LISTEN

		Or, for	example, to list network files with all	UDP states ex-
		cept Idle, use:

		     -iUDP -sUDP:^Idle

		State names vary with UNIX dialects, so	it's not  possible  to
		provide	 a  complete  list.   Some common TCP state names are:
		CLOSED,	IDLE, BOUND, LISTEN, ESTABLISHED, SYN_SENT,  SYN_RCDV,
		ESTABLISHED,   CLOSE_WAIT,   FIN_WAIT1,	  CLOSING,   LAST_ACK,
		FIN_WAIT_2, and	TIME_WAIT.  Two	common UDP state names are Un-
		bound and Idle.

		See  the  lsof	FAQ (The FAQ section gives its location.)  for
		more information on how	to use protocol	 state	exclusion  and
		inclusion, including examples.

		The -o (without	a following decimal digit count) and -s	option
		(without a following protocol and state	name list)  are	 mutu-
		ally exclusive;	they can't both	be specified.  When neither is
		specified, lsof	displays whatever value	- size or offset -  is
		appropriate and	available for the type of file.

		Since some types of files don't	have true sizes	- sockets, FI-
		FOs, pipes, etc. - lsof	displays for their sizes  the  content
		amounts	in their associated kernel buffers, if possible.

       -S [t]	specifies  an optional time-out	seconds	value for kernel func-
		tions -	lstat(2), readlink(2), and stat(2) - that might	other-
		wise  deadlock.	  The  minimum for t is	two; the default, fif-
		teen; when no value is specified, the default is used.

		See the	BLOCKS AND TIMEOUTS section for	more information.

       -T [t]	controls the reporting of some TCP/TPI information,  also  re-
		ported	by  netstat(1),	 following  the	network	addresses.  In
		normal output the information  appears	in  parentheses,  each
		item  except  TCP  or  TPI state name identified by a keyword,
		followed by `=', separated from	others by a single space:

		     <TCP or TPI state name>
		     QR=<read queue length>
		     QS=<send queue length>
		     SO=<socket	options	and values>
		     SS=<socket	states>
		     TF=<TCP flags and values>
		     WR=<window	read length>
		     WW=<window	write length>

		Not all	values are reported for	all UNIX dialects.  Items val-
		ues (when available) are reported after	the item name and '='.

		When  the field	output mode is in effect (See OUTPUT FOR OTHER
		PROGRAMS.)  each item appears as a field with  a  `T'  leading
		character.

		-T  with no following key characters disables TCP/TPI informa-
		tion reporting.

		-T with	following characters selects the reporting of specific
		TCP/TPI	information:

		     f	  selects reporting of socket options,
			  states and values, and TCP flags and
			  values.
		     q	  selects queue	length reporting.
		     s	  selects connection state reporting.
		     w	  selects window size reporting.

		Not  all selections are	enabled	for some UNIX dialects.	 State
		may be selected	for all	dialects and is	reported  by  default.
		The -h or -?  help output for the -T option will show what se-
		lections may be	used with the UNIX dialect.

		When -T	is used	to select information -	i.e., it  is  followed
		by  one	or more	selection characters - the displaying of state
		is disabled by default,	and it	must  be  explicitly  selected
		again  in  the characters following -T.	 (In effect, then, the
		default	is equivalent to -Ts.)	For example, if	queue  lengths
		and state are desired, use -Tqs.

		Socket	options,  socket states, some socket values, TCP flags
		and one	TCP value may be reported (when	available in the  UNIX
		dialect)  in  the form of the names that commonly appear after
		SO_, so_, SS_, TCP_  and TF_ in	the dialect's header  files  -
		most	 often	   <sys/socket.h>,    <sys/socketvar.h>	   and
		<netinet/tcp_var.h>.  Consult those header files for the mean-
		ing of the flags, options, states and values.

		``SO=''	 precedes  socket  options and values; ``SS='',	socket
		states;	and ``TF='', TCP flags and values.

		If a flag or option has	a value, the value will	follow an  '='
		and   the   name   --  e.g.,  ``SO=LINGER=5'',	``SO=QLIM=5'',
		``TF=MSS=512''.	 The following seven values may	be reported:

		     Name
		     Reported  Description (Common Symbol)

		     KEEPALIVE keep alive time (SO_KEEPALIVE)
		     LINGER    linger time (SO_LINGER)
		     MSS       maximum segment size (TCP_MAXSEG)
		     PQLEN	    partial listen queue connections
		     QLEN      established listen queue	connections
		     QLIM      established listen queue	limit
		     RCVBUF    receive buffer length (SO_RCVBUF)
		     SNDBUF    send buffer length (SO_SNDBUF)

		Details	on what	socket options and values, socket states,  and
		TCP  flags and values may be displayed for particular UNIX di-
		alects may be found in the answer to the  ``Why	 doesn't  lsof
		report socket options, socket states, and TCP flags and	values
		for my dialect?'' and ``Why doesn't lsof  report  the  partial
		listen	queue connection count for my dialect?''  questions in
		the lsof FAQ (The FAQ section gives its	location.)   On	 Linux
		this option also prints	the state of UNIX domain sockets.

       -t	produce	 terse	output	comprising  only  process  identifiers
		(without a header), so that it is  easy	 to  use  programmati-
		cally. e.g.

		     # reload anything using old SSL
		     lsof -t /lib/*/libssl.so.*	| xargs	-r kill	-HUP

		     # get list	of processes and then iterate over them	(Bash only)
		     mapfile -t	pids < <(
			 lsof -wt /var/log/your.log
		     )
		     for pid in	"${pids[@]}" ; do
			 your_command -p "$pid"
		     done

		The -t option implies the -w option.

       -u s	selects	the listing of files for the user whose	login names or
		user ID	numbers	are in	the  comma-separated  set  s  -	 e.g.,
		``abe'',  or  ``548,root''.  (There should be no spaces	in the
		set.)

		Multiple login names or	user ID	numbers	are joined in a	single
		ORed set before	participating in AND option selection.

		If  a login name or user ID is preceded	by a `^', it becomes a
		negation - i.e., files of processes owned by the login name or
		user ID	will never be listed.  A negated login name or user ID
		selection is neither ANDed nor ORed with other selections;  it
		is applied before all other selections and absolutely excludes
		the listing of the files of the	process.  For example, to  di-
		rect  lsof  to	exclude	the listing of files belonging to root
		processes, specify ``-u^root'' or ``-u^0''.

       -U	selects	the listing of UNIX domain socket files.

       -v	selects	the listing of lsof  version  information,  including:
		revision  number;  when	 the  lsof binary was constructed; who
		constructed the	binary and where; the  name  of	 the  compiler
		used  to  construct the	lsof binary; the version number	of the
		compiler when readily available; the compiler and loader flags
		used  to  construct  the  lsof binary; and system information,
		typically the output of	uname's	-a option.

       -V	directs	lsof to	indicate the items it was asked	 to  list  and
		failed to find - command names,	file names, Internet addresses
		or files, login	names, NFS files, PIDs,	PGIDs, and UIDs.

		When other options  are	 ANDed	to  search  options,  or  com-
		pile-time options restrict the listing of some files, lsof may
		not report that	it failed to find a search item	when an	 ANDed
		option or compile-time option prevents the listing of the open
		file containing	the located search item.

		For example, ``lsof -V -iTCP@foobar -a -d 999''	may not	report
		a  failure  to locate open files at ``TCP@foobar'' and may not
		list any, if none have a file descriptor  number  of  999.   A
		similar	 situation  arises when	HASSECURITY and	HASNOSOCKSECU-
		RITY are defined at compile time and they prevent the  listing
		of open	files.

       +|-w	Enables	 (+)  or  disables (-) the suppression of warning mes-
		sages.

		The lsof builder may choose to have warning messages  disabled
		or  enabled  by	default.  The default warning message state is
		indicated in the output	of the -h or  -?   option.   Disabling
		warning	 messages  when	 they are already disabled or enabling
		them when already enabled is acceptable.

		The -t option implies the -w option.

       -x [fl]	may accompany the +d and +D options to direct their processing
		to  cross  over	symbolic links and|or file system mount	points
		encountered when scanning the directory	(+d) or	directory tree
		(+D).

		If  -x	is  specified by itself	without	a following parameter,
		cross-over processing of both symbolic links and  file	system
		mount points is	enabled.  Note that when -x is specified with-
		out a parameter, the next argument must	begin with '-' or '+'.

		The optional 'f' parameter enables  file  system  mount	 point
		cross-over  processing;	'l', symbolic link cross-over process-
		ing.

		The -x option may not be supplied without also supplying a  +d
		or +D option.

       -X	This is	a dialect-specific option.

	   AIX:
		This IBM AIX RISC/System 6000 option requests the reporting of
		executed text file and shared library references.

		WARNING: because this option uses the kernel readx() function,
		its  use  on  a	 busy  AIX  system  might cause	an application
		process	to hang	so completely that it can  neither  be	killed
		nor stopped.  I	have never seen	this happen or had a report of
		its happening, but I think there is a  remote  possibility  it
		could happen.

		By  default  use  of readx() is	disabled.  On AIX 5L and above
		lsof may need setuid-root permission to	 perform  the  actions
		this option requests.

		The  lsof builder may specify that the -X option be restricted
		to processes whose real	UID is root.  If that has  been	 done,
		the -X option will not appear in the -h	or -?  help output un-
		less the real UID of the lsof process is  root.	  The  default
		lsof  distribution allows any UID to specify -X, so by default
		it will	appear in the help output.

		When AIX readx() use is	disabled, lsof may not be able to  re-
		port  information for all text and loader file references, but
		it may also avoid exacerbating an AIX kernel directory	search
		kernel error, known as the Stale Segment ID bug.

		The readx() function, used by lsof or any other	program	to ac-
		cess some sections of kernel virtual memory, can  trigger  the
		Stale  Segment ID bug.	It can cause the kernel's dir_search()
		function to believe erroneously	that part of an	in-memory copy
		of  a file system directory has	been zeroed.  Another applica-
		tion process, distinct from lsof, asking the kernel to	search
		the   directory	  -   e.g.,  by	 using	open(2)	 -  can	 cause
		dir_search() to	loop forever,  thus  hanging  the  application
		process.

		Consult	 the  lsof  FAQ	 (The FAQ section gives	its location.)
		and the	00README file of the lsof distribution for a more com-
		plete  description  of the Stale Segment ID bug, its APAR, and
		methods	for defining readx() use when compiling	lsof.

	   Linux:
		This Linux option requests that	lsof skip the reporting	of in-
		formation  on  all  open  TCP,	UDP  and UDPLITE IPv4 and IPv6
		files.

		This Linux option is most useful when the system  has  an  ex-
		tremely	 large	number of open TCP, UDP	and UDPLITE files, the
		processing of whose  information  in  the  /proc/net/tcp*  and
		/proc/net/udp*	files  would  take lsof	a long time, and whose
		reporting is not of interest.

		Use this option	with care and only when	you are	sure that  the
		information  you  want	lsof  to display isn't associated with
		open TCP, UDP or UDPLITE socket	files.

	   Solaris 10 and above:
		This Solaris 10	and above option  requests  the	 reporting  of
		cached	paths for files	that have been deleted - i.e., removed
		with rm(1) or unlink(2).

		The cached path	is followed by the  string  `` (deleted)''  to
		indicate  that	the path by which the file was opened has been
		deleted.

		Because	intervening changes made to the	path -	i.e.,  renames
		with mv(1) or rename(2)	- are not recorded in the cached path,
		what lsof reports is only the  path  by	 which	the  file  was
		opened,	not its	possibly different final path.

       -z [z]	specifies  how Solaris 10 and higher zone information is to be
		handled.

		Without	a following argument - e.g., NO	z - the	option	speci-
		fies  that zone	names are to be	listed in the ZONE output col-
		umn.

		The -z option may be followed by a zone	name, z.  That	causes
		lsof to	list only open files for processes in that zone.  Mul-
		tiple -z z option and argument pairs may be specified to  form
		a list of named	zones.	Any open file of any process in	any of
		the zones will be listed, subject to other  conditions	speci-
		fied by	other options and arguments.

       -Z [Z]	specifies how SELinux security contexts	are to be handled.  It
		and 'Z'	field output  character	 support  are  inhibited  when
		SELinux	 is  disabled in the running Linux kernel.  See	OUTPUT
		FOR OTHER PROGRAMS for more information	on the 'Z' field  out-
		put character.

		Without	 a following argument -	e.g., NO Z - the option	speci-
		fies that security contexts are	to  be	listed	in  the	 SECU-
		RITY-CONTEXT output column.

		The  -Z	 option	may be followed	by a wildcard security context
		name, Z.  That causes lsof to list only	open  files  for  pro-
		cesses in that security	context.  Multiple -Z Z	option and ar-
		gument pairs may be specified to form a	list of	security  con-
		texts.	 Any  open  file of any	process	in any of the security
		contexts will be listed, subject to other conditions specified
		by  other  options and arguments.  Note	that Z can be A:B:C or
		*:B:C or A:B:* or *:*:C	to match against the A:B:C context.

       --	The double minus sign option is	a marker that signals the  end
		of  the	 keyed options.	 It may	be used, for example, when the
		first file name	begins with a minus sign.  It may also be used
		when  the absence of a value for the last keyed	option must be
		signified by the presence of a minus sign in the following op-
		tion and before	the start of the file names.

       names	These  are  path  names	 of  specific files to list.  Symbolic
		links are resolved before use.	The first name	may  be	 sepa-
		rated from the preceding options with the ``--'' option.

		If  a name is the mounted-on directory of a file system	or the
		device of the file system, lsof	will list all the  files  open
		on  the	file system.  To be considered a file system, the name
		must match a mounted-on	directory name in mount(8) output,  or
		match  the name	of a block device associated with a mounted-on
		directory name.	 The +|-f option may be	used to	force lsof  to
		consider a name	a file system identifier (+f) or a simple file
		(-f).

		If name	is a path to a directory that is  not  the  mounted-on
		directory name of a file system, it is treated just as a regu-
		lar file is treated - i.e., its	listing	is restricted to  pro-
		cesses	that  have  it open as a file or as a process-specific
		directory, such	as the root or current working directory.   To
		request	that lsof look for open	files inside a directory name,
		use the	+d s and +D D options.

		If a name is the base name of a	family of multiplexed files  -
		e.g,  AIX's  /dev/pt[cs]  -  lsof will list all	the associated
		multiplexed  files  on	the  device  that  are	open  -	 e.g.,
		/dev/pt[cs]/1, /dev/pt[cs]/2, etc.

		If  a  name  is	 a  UNIX domain	socket name, lsof will usually
		search for it by the characters	of the name alone - exactly as
		it  is	specified  and is recorded in the kernel socket	struc-
		ture.  (See the	next paragraph for an exception	to  that  rule
		for  Linux.)   Specifying  a relative path - e.g., ./file - in
		place of the file's absolute path - e.g.,  /tmp/file  -	 won't
		work  because  lsof must match the characters you specify with
		what it	finds in the kernel UNIX domain	socket structures.

		If a name is a Linux UNIX domain socket	name, in one case lsof
		is  able  to search for	it by its device and inode number, al-
		lowing name to be a relative path.  The	case requires that the
		absolute  path	--  i.e.,  one beginning with a	slash ('/') be
		used by	the process that created  the  socket,	and  hence  be
		stored	in  the	/proc/net/unix file; and it requires that lsof
		be able	to obtain the device and node numbers of both the  ab-
		solute	path in	/proc/net/unix and name	via successful stat(2)
		system calls.  When those conditions are  met,	lsof  will  be
		able to	search for the UNIX domain socket when some path to it
		is is specified	in name.  Thus,	for example, if	 the  path  is
		/dev/log, and an lsof search is	initiated when the working di-
		rectory	is /dev, then name could be ./log.

		If a name is none of the above,	lsof will list any open	 files
		whose device and inode match that of the specified path	name.

		If  you	 have also specified the -b option, the	only names you
		may safely specify are file systems for	which your mount table
		supplies  alternate  device  numbers.  See the AVOIDING	KERNEL
		BLOCKS and ALTERNATE DEVICE NUMBERS sections for more informa-
		tion.

		Multiple  file	names  are  joined in a	single ORed set	before
		participating in AND option selection.

AFS
       Lsof supports the recognition of	AFS files for these dialects (and  AFS
       versions):

	    AIX	4.1.4 (AFS 3.4a)
	    HP-UX 9.0.5	(AFS 3.4a)
	    Linux 1.2.13 (AFS 3.3)
	    Solaris 2.[56] (AFS	3.4a)

       It may recognize	AFS files on other versions of these dialects, but has
       not been	tested there.  Depending on how	AFS is implemented,  lsof  may
       recognize  AFS files in other dialects, or may have difficulties	recog-
       nizing AFS files	in the supported dialects.

       Lsof may	have trouble identifying all aspects of	AFS files in supported
       dialects	 when  AFS  kernel  support is implemented via dynamic modules
       whose addresses do not appear in	the kernel's variable name  list.   In
       that  case,  lsof  may  have to guess at	the identity of	AFS files, and
       might not be able to obtain volume information from the kernel that  is
       needed  for  calculating	AFS volume node	numbers.  When lsof can't com-
       pute volume node	numbers, it reports blank in the NODE column.

       The -A A	option is available in some dialect  implementations  of  lsof
       for specifying the name list file where dynamic module kernel addresses
       may be found.  When this	option is available, it	will be	listed in  the
       lsof help output, presented in response to the -h or -?

       See the lsof FAQ	(The FAQ section gives its location.)  for more	infor-
       mation about dynamic modules, their symbols, and	how they  affect  lsof
       options.

       Because AFS path	lookups	don't seem to participate in the kernel's name
       cache operations, lsof can't identify  path  name  components  for  AFS
       files.

SECURITY
       Lsof  has  three	features that may cause	security concerns.  First, its
       default compilation mode	allows anyone to list all open files with  it.
       Second,	by default it creates a	user-readable and user-writable	device
       cache file in the home directory	of the	real  user  ID	that  executes
       lsof.   (The  list-all-open-files and device cache features may be dis-
       abled when lsof is compiled.)  Third, its -k and	-m options name	alter-
       nate kernel name	list or	memory files.

       Restricting  the	 listing  of  all open files is	controlled by the com-
       pile-time HASSECURITY and HASNOSOCKSECURITY options.  When  HASSECURITY
       is  defined, lsof will allow only the root user to list all open	files.
       The non-root user may list only open files of processes with  the  same
       user  IDentification  number  as	 the  real  user ID number of the lsof
       process (the one	that its user logged on	with).

       However,	if HASSECURITY and HASNOSOCKSECURITY are both defined,	anyone
       may  list open socket files, provided they are selected with the	-i op-
       tion.

       When HASSECURITY	is not defined,	anyone may list	all open files.

       Help output, presented in response to the -h or -?  option,  gives  the
       status of the HASSECURITY and HASNOSOCKSECURITY definitions.

       See  the	Security section of the	00README file of the lsof distribution
       for information on building lsof	with the HASSECURITY and  HASNOSOCKSE-
       CURITY options enabled.

       Creation	and use	of a user-readable and user-writable device cache file
       is controlled by	the compile-time HASDCACHE  option.   See  the	DEVICE
       CACHE  FILE  section and	the sections that follow it for	details	on how
       its path	is formed.  For	security considerations	 it  is	 important  to
       note  that  in the default lsof distribution, if	the real user ID under
       which lsof is executed is root, the device cache	file will  be  written
       in root's home directory	- e.g.,	/ or /root.  When HASDCACHE is not de-
       fined, lsof does	not write or attempt to	read a device cache file.

       When HASDCACHE is defined, the lsof help	output,	presented in  response
       to the -h, -D?, or -?  options, will provide device cache file handling
       information.  When HASDCACHE is not defined, the	-h or -?  output  will
       have no -D option description.

       Before  you  decide to disable the device cache file feature - enabling
       it improves the performance of lsof by reducing the startup overhead of
       examining  all the nodes	in /dev	(or /devices) -	read the discussion of
       it in the 00DCACHE file of the lsof distribution	and the	lsof FAQ  (The
       FAQ section gives its location.)

       WHEN  IN	DOUBT, YOU CAN TEMPORARILY DISABLE THE USE OF THE DEVICE CACHE
       FILE WITH THE -Di OPTION.

       When lsof user declares alternate kernel	name list or memory files with
       the  -k	and  -m	options, lsof checks the user's	authority to read them
       with access(2).	This is	intended to  prevent  whatever	special	 power
       lsof's modes might confer on it from letting it read files not normally
       accessible via the authority of the real	user ID.

OUTPUT
       This section describes the information lsof lists for each  open	 file.
       See the OUTPUT FOR OTHER	PROGRAMS section for additional	information on
       output that can be processed by another program.

       Lsof only outputs printable (declared so	by isprint(3)) 8  bit  charac-
       ters.   Non-printable characters	are printed in one of three forms: the
       C ``\[bfrnt]'' form; the	control	character `^' form (e.g., ``^@'');  or
       hexadecimal  leading ``\x'' form	(e.g., ``\xab'').  Space is non-print-
       able in the COMMAND column (``\x20'') and printable elsewhere.

       For some	dialects - if HASSETLOCALE is defined  in  the	dialect's  ma-
       chine.h	header file - lsof will	print the extended 8 bit characters of
       a language locale.  The lsof process must be supplied a language	locale
       environment  variable  (e.g., LANG) whose value represents a known lan-
       guage locale in which the extended characters are considered  printable
       by  isprint(3).	 Otherwise lsof	considers the extended characters non-
       printable and prints them according  to	its  rules  for	 non-printable
       characters, stated above.  Consult your dialect's setlocale(3) man page
       for the names of	other environment variables that may be	used in	 place
       of LANG - e.g., LC_ALL, LC_CTYPE, etc.

       Lsof's  language	 locale	support	for a dialect also covers wide charac-
       ters - e.g., UTF-8 - when HASSETLOCALE and HASWIDECHAR are  defined  in
       the  dialect's  machine.h header	file, and when a suitable language lo-
       cale has	been defined in	the appropriate	environment variable  for  the
       lsof  process.  Wide characters are printable under those conditions if
       iswprint(3) reports them	to be.	If  HASSETLOCALE,  HASWIDECHAR	and  a
       suitable	language locale	aren't defined,	or if iswprint(3) reports wide
       characters that aren't printable, lsof considers	 the  wide  characters
       non-printable  and  prints  each	of their 8 bits	according to its rules
       for non-printable characters, stated above.

       Consult the answers to the "Language locale support" questions  in  the
       lsof FAQ	(The FAQ section gives its location.) for more information.

       Lsof dynamically	sizes the output columns each time it runs, guarantee-
       ing that	each column is a minimum size.	It also	guarantees  that  each
       column is separated from	its predecessor	by at least one	space.

       COMMAND	  contains  the	 first nine characters of the name of the UNIX
		  command associated with the process.	If a non-zero w	 value
		  is  specified	 to  the  +c w option, the column contains the
		  first	w characters of	the name of the	UNIX  command  associ-
		  ated with the	process	up to the limit	of characters supplied
		  to lsof by the UNIX dialect.	(See the description of	the +c
		  w  command  or  the  lsof FAQ	for more information.  The FAQ
		  section gives	its location.)

		  If w is less than the	length of  the	column	title,	``COM-
		  MAND'', it will be raised to that length.

		  If  a	zero w value is	specified to the +c w option, the col-
		  umn contains all the characters of the name of the UNIX com-
		  mand associated with the process.

		  All  command name characters maintained by the kernel	in its
		  structures are displayed in field output  when  the  command
		  name	descriptor  (`c')  is  specified.   See	the OUTPUT FOR
		  OTHER	COMMANDS section for information  on  selecting	 field
		  output and the associated command name descriptor.

       PID	  is the Process IDentification	number of the process.

       TID	  is the task (thread) IDentification number, if task (thread)
		  reporting is supported by the	dialect	and a task (thread) is
		  being	 listed.  (If help output - i.e., the output of	the -h
		  or -?	 options - shows this option, then task	 (thread)  re-
		  porting is supported by the dialect.)

		  A  blank  TID	 column	in Linux indicates a process - i.e., a
		  non-task.

       TASKCMD	  is the task command name.  Generally this will be  the  same
		  as  the  process  named in the COMMAND column, but some task
		  implementations (e.g., Linux)	permit a task  to  change  its
		  command name.

		  The TASKCMD column width is subject to the same size limita-
		  tion as the COMMAND column.

       ZONE	  is the Solaris 10 and	higher zone name.  This	column must be
		  selected with	the -z option.

       SECURITY-CONTEXT
		  is  the  SELinux  security context.  This column must	be se-
		  lected with the -Z option.  Note that	the -Z option  is  in-
		  hibited  when	 SELinux is disabled in	the running Linux ker-
		  nel.

       PPID	  is the Parent	Process	IDentification number of the  process.
		  It is	only displayed when the	-R option has been specified.

       PGID	  is  the  process group IDentification	number associated with
		  the process.	It is only displayed when the  -g  option  has
		  been specified.

       USER	  is  the user ID number or login name of the user to whom the
		  process belongs, usually the	same  as  reported  by	ps(1).
		  However,  on	Linux USER is the user ID number or login that
		  owns the directory in	/proc  where  lsof  finds  information
		  about	 the process.  Usually that is the same	value reported
		  by ps(1), but	may differ when	the process  has  changed  its
		  effective  user  ID.	(See the -l option description for in-
		  formation on when a user ID number or	 login	name  is  dis-
		  played.)

       FD	  is the File Descriptor number	of the file or:

		       cwd  current working directory;
		       Lnn  library references (AIX);
		       err  FD information error (see NAME column);
		       jld  jail directory (FreeBSD);
		       ltx  shared library text	(code and data);
		       Mxx  hex	memory-mapped type number xx.
		       m86  DOS	Merge mapped file;
		       mem  memory-mapped file;
		       mmap memory-mapped device;
		       pd   parent directory;
		       rtd  root directory;
		       tr   kernel trace file (OpenBSD);
		       txt  program text (code and data);
		       v86  VP/ix mapped file;

		  FD  is  followed  by one of these characters,	describing the
		  mode under which the file is open:

		       r for read access;
		       w for write access;
		       u for read and write access;
		       space if	mode unknown and no lock
			    character follows;
		       `-' if mode unknown and lock
			    character follows.

		  The mode character is	followed by one	of these lock  charac-
		  ters,	describing the type of lock applied to the file:

		       N for a Solaris NFS lock	of unknown type;
		       r for read lock on part of the file;
		       R for a read lock on the	entire file;
		       w for a write lock on part of the file;
		       W for a write lock on the entire	file;
		       u for a read and	write lock of any length;
		       U for a lock of unknown type;
		       x  for an SCO OpenServer	Xenix lock on part	of the
		  file;
		       X for an	SCO OpenServer Xenix lock on the entire	file;
		       space if	there is no lock.

		  See the LOCKS	section	for more information on	the  lock  in-
		  formation character.

		  The  FD column contents constitutes a	single field for pars-
		  ing in post-processing scripts. FD numbers larger than  9999
		  are  abbreviated  to a ``*'' followed	by the last three dig-
		  its. E.g., 10001 appears as ``*001''

       TYPE	  is the type of the node associated with  the	file  -	 e.g.,
		  GDIR,	GREG, VDIR, VREG, etc.

		  or ``IPv4'' for an IPv4 socket;

		  or  ``IPv6'' for an open IPv6	network	file - even if its ad-
		  dress	is IPv4, mapped	in an IPv6 address;

		  or ``ax25'' for a Linux AX.25	socket;

		  or ``inet'' for an Internet domain socket;

		  or ``lla'' for a HP-UX link level access file;

		  or ``rte'' for an AF_ROUTE socket;

		  or ``sock'' for a socket of unknown domain;

		  or ``unix'' for a UNIX domain	socket;

		  or ``x.25'' for an HP-UX x.25	socket;

		  or ``BLK'' for a block special file;

		  or ``CHR'' for a character special file;

		  or ``DEL'' for a Linux map file that has been	deleted;

		  or ``DIR'' for a directory;

		  or ``DOOR'' for a VDOOR file;

		  or ``FIFO'' for a FIFO special file;

		  or ``KQUEUE''	for a BSD style	kernel event queue file;

		  or ``LINK'' for a symbolic link file;

		  or ``MPB'' for a multiplexed block file;

		  or ``MPC'' for a multiplexed character file;

		  or ``NOFD'' for a Linux /proc/<PID>/fd directory that	 can't
		  be  opened --	the directory path appears in the NAME column,
		  followed by an error message;

		  or ``PAS'' for a /proc/as file;

		  or ``PAXV'' for a /proc/auxv file;

		  or ``PCRE'' for a /proc/cred file;

		  or ``PCTL'' for a /proc control file;

		  or ``PCUR'' for the current /proc process;

		  or ``PCWD'' for a /proc current working directory;

		  or ``PDIR'' for a /proc directory;

		  or ``PETY'' for a /proc executable type (etype);

		  or ``PFD'' for a /proc file descriptor;

		  or ``PFDR'' for a /proc file descriptor directory;

		  or ``PFIL'' for an executable	/proc file;

		  or ``PFPR'' for a /proc FP register set;

		  or ``PGD'' for a /proc/pagedata file;

		  or ``PGID'' for a /proc group	notifier file;

		  or ``PIPE'' for pipes;

		  or ``PLC'' for a /proc/lwpctl	file;

		  or ``PLDR'' for a /proc/lpw directory;

		  or ``PLDT'' for a /proc/ldt file;

		  or ``PLPI'' for a /proc/lpsinfo file;

		  or ``PLST'' for a /proc/lstatus file;

		  or ``PLU'' for a /proc/lusage	file;

		  or ``PLWG'' for a /proc/gwindows file;

		  or ``PLWI'' for a /proc/lwpsinfo file;

		  or ``PLWS'' for a /proc/lwpstatus file;

		  or ``PLWU'' for a /proc/lwpusage file;

		  or ``PLWX'' for a /proc/xregs	file;

		  or ``PMAP'' for a /proc map file (map);

		  or ``PMEM'' for a /proc memory image file;

		  or ``PNTF'' for a /proc process notifier file;

		  or ``POBJ'' for a /proc/object file;

		  or ``PODR'' for a /proc/object directory;

		  or ``POLP'' for an old format	 /proc	light  weight  process
		  file;

		  or ``POPF'' for an old format	/proc PID file;

		  or ``POPG'' for an old format	/proc page data	file;

		  or ``PORT'' for a SYSV named pipe;

		  or ``PREG'' for a /proc register file;

		  or ``PRMP'' for a /proc/rmap file;

		  or ``PRTD'' for a /proc root directory;

		  or ``PSGA'' for a /proc/sigact file;

		  or ``PSIN'' for a /proc/psinfo file;

		  or ``PSTA'' for a /proc status file;

		  or ``PSXMQ'' for a POSIX message queue file;

		  or ``PSXSEM''	for a POSIX semaphore file;

		  or ``PSXSHM''	for a POSIX shared memory file;

		  or ``PTS'' for a /dev/pts file;

		  or ``PUSG'' for a /proc/usage	file;

		  or ``PW'' for	a /proc/watch file;

		  or ``PXMP'' for a /proc/xmap file;

		  or ``REG'' for a regular file;

		  or ``SMT'' for a shared memory transport file;

		  or ``STSO'' for a stream socket;

		  or ``UNNM'' for an unnamed type file;

		  or  ``XNAM'' for an OpenServer Xenix special file of unknown
		  type;

		  or ``XSEM'' for an OpenServer	Xenix semaphore	file;

		  or ``XSD'' for an OpenServer Xenix shared data file;

		  or the four type number octets  if  the  corresponding  name
		  isn't	known.

       FILE-ADDR  contains  the	 kernel	file structure address when f has been
		  specified to +f;

       FCT	  contains the file  reference	count  from  the  kernel  file
		  structure when c has been specified to +f;

       FILE-FLAG  when	g  or  G has been specified to +f, this	field contains
		  the contents of the f_flag[s]	 member	 of  the  kernel  file
		  structure  and  the kernel's per-process open	file flags (if
		  available); `G' causes them to be displayed in  hexadecimal;
		  `g',	as  short-hand	names; two lists may be	displayed with
		  entries separated by commas, the lists separated by a	 semi-
		  colon	(`;'); the first list may contain short-hand names for
		  f_flag[s] values from	the following table:

		       AIO	 asynchronous I/O (e.g., FAIO)
		       AP	 append
		       ASYN	 asynchronous I/O (e.g., FASYNC)
		       BAS	 block,	test, and set in use
		       BKIU	 block if in use
		       BL	 use block offsets
		       BSK	 block seek
		       CA	 copy avoid
		       CIO	 concurrent I/O
		       CLON	 clone
		       CLRD	 CL read
		       CR	 create
		       DF	 defer
		       DFI	 defer IND
		       DFLU	 data flush
		       DIR	 direct
		       DLY	 delay
		       DOCL	 do clone
		       DSYN	 data-only integrity
		       DTY	 must be a directory
		       EVO	 event only
		       EX	 open for exec
		       EXCL	 exclusive open
		       FSYN	 synchronous writes
		       GCDF	 defer during unp_gc() (AIX)
		       GCMK	 mark during unp_gc() (AIX)
		       GTTY	 accessed via /dev/tty
		       HUP	 HUP in	progress
		       KERN	 kernel
		       KIOC	 kernel-issued ioctl
		       LCK	 has lock
		       LG	 large file
		       MBLK	 stream	message	block
		       MK	 mark
		       MNT	 mount
		       MSYN	 multiplex synchronization
		       NATM	 don't update atime
		       NB	 non-blocking I/O
		       NBDR	 no BDRM check
		       NBIO	 SYSV non-blocking I/O
		       NBF	 n-buffering in	effect
		       NC	 no cache
		       ND	 no delay
		       NDSY	 no data synchronization
		       NET	 network
		       NFLK	 don't follow links
		       NMFS	 NM file system
		       NOTO	 disable background stop
		       NSH	 no share
		       NTTY	 no controlling	TTY
		       OLRM	 OLR mirror
		       PAIO	 POSIX asynchronous I/O
		       PATH	 path
		       PP	 POSIX pipe
		       R	 read
		       RC	 file and record locking cache
		       REV	 revoked
		       RSH	 shared	read
		       RSYN	 read synchronization
		       RW	 read and write	access
		       SL	 shared	lock
		       SNAP	 cooked	snapshot
		       SOCK	 socket
		       SQSH	 Sequent shared	set on open
		       SQSV	 Sequent SVM set on open
		       SQR	 Sequent set repair on open
		       SQS1	 Sequent full shared open
		       SQS2	 Sequent partial shared	open
		       STPI	 stop I/O
		       SWR	 synchronous read
		       SYN	 file integrity	while writing
		       TCPM	 avoid TCP collision
		       TMPF	 temporary file
		       TR	 truncate
		       W	 write
		       WKUP	 parallel I/O synchronization
		       WTG	 parallel I/O synchronization
		       VH	 vhangup pending
		       VTXT	 virtual text
		       XL	 exclusive lock

		  this list of names was derived from F* #define's in  dialect
		  header   files   <fcntl.h>,	<linux</fs.h>,	<sys/fcntl.c>,
		  <sys/fcntlcom.h>, and	<sys/file.h>; see  the	lsof.h	header
		  file for a list showing the correspondence between the above
		  short-hand names and the header file definitions;

		  the second list (after the semicolon)	may contain short-hand
		  names	 for  kernel per-process open file flags from this ta-
		  ble:

		       ALLC	 allocated
		       BR	 the file has been read
		       BHUP	 activity stopped by SIGHUP
		       BW	 the file has been written
		       CLSG	 closing
		       CX	 close-on-exec (see fcntl(F_SETFD))
		       LCK	 lock was applied
		       MP	 memory-mapped
		       OPIP	 open pending -	in progress
		       RSVW	 reserved wait
		       SHMT	 UF_FSHMAT set (AIX)
		       USE	 in use	(multi-threaded)

       NODE-ID	  (or INODE-ADDR for some dialects) contains a unique  identi-
		  fier	for  the  file node (usually the kernel	vnode or inode
		  address, but also occasionally a concatenation of device and
		  node number) when n has been specified to +f;

       DEVICE	  contains  the	 device	 numbers,  separated  by commas, for a
		  character special, block special, regular, directory or  NFS
		  file;

		  or  ``memory''  for  a  memory  file system node under Tru64
		  UNIX;

		  or the address of the	private	data area of a Solaris	socket
		  stream;

		  or  a	kernel reference address that identifies the file (The
		  kernel reference address may be used for FIFO's,  for	 exam-
		  ple.);

		  or  the  base	address	or device name of a Linux AX.25	socket
		  device.

		  Usually only the lower thirty	two bits of Tru64 UNIX	kernel
		  addresses are	displayed.

       SIZE, SIZE/OFF, or OFFSET
		  is  the  size	 of  the  file or the file offset in bytes.  A
		  value	is displayed in	this column only if it	is  available.
		  Lsof displays	whatever value - size or offset	- is appropri-
		  ate for the type of the file and the version of lsof.

		  On some UNIX dialects	lsof can't obtain accurate or  consis-
		  tent	file  offset information from its kernel data sources,
		  sometimes just for particular	kinds of files	(e.g.,	socket
		  files.)  In other cases, files don't have true sizes - e.g.,
		  sockets, FIFOs, pipes	- so lsof displays for their sizes the
		  content  amounts it finds in their kernel buffer descriptors
		  (e.g., socket	buffer size counts or  TCP/IP  window  sizes.)
		  Consult  the	lsof FAQ (The FAQ section gives	its location.)
		  for more information.

		  The file size	is displayed in	decimal; the  offset  is  nor-
		  mally	 displayed in decimal with a leading ``0t'' if it con-
		  tains	8 digits or less; in hexadecimal with a	leading	``0x''
		  if it	is longer than 8 digits.  (Consult the -o o option de-
		  scription for	information on when 8 might  default  to  some
		  other	value.)

		  Thus	the  leading ``0t'' and	``0x'' identify	an offset when
		  the column may contain both a	size and an offset (i.e.,  its
		  title	is SIZE/OFF).

		  If the -o option is specified, lsof always displays the file
		  offset (or nothing if	no offset is available)	and labels the
		  column  OFFSET.   The	 offset	 always	 begins	with ``0t'' or
		  ``0x'' as described above.

		  The lsof user	can control the	switch from ``0t''  to	``0x''
		  with	the -o o option.  Consult its description for more in-
		  formation.

		  If the -s option is specified, lsof always displays the file
		  size	(or  nothing  if  no size is available)	and labels the
		  column SIZE.	The -o and -s options are mutually  exclusive;
		  they can't both be specified.

		  For  files that don't	have a fixed size - e.g., don't	reside
		  on a disk device - lsof will display appropriate information
		  about	 the  current  size  or	 position of the file if it is
		  available in the kernel structures that define the file.

       NLINK	  contains the file link count when +L has been	specified;

       NODE	  is the node number of	a local	file;

		  or the inode number of an NFS	file in	the server host;

		  or the Internet protocol type	- e.g, ``TCP'';

		  or ``STR'' for a stream;

		  or ``CCITT'' for an HP-UX x.25 socket;

		  or the IRQ or	inode number of	a Linux	AX.25 socket device.

       NAME	  is the name of the mount point and file system on which  the
		  file resides;

		  or  the  name	of a file specified in the names option	(after
		  any symbolic links have been resolved);

		  or the name of a character special or	block special device;

		  or the local and remote  Internet  addresses	of  a  network
		  file;	 the  local  host  name	 or IP number is followed by a
		  colon	(':'), the port, ``->'', and the two-part  remote  ad-
		  dress; IP addresses may be reported as numbers or names, de-
		  pending on the +|-M, -n,  and	 -P  options;  colon-separated
		  IPv6	numbers	 are  enclosed	in  square  brackets; IPv4 IN-
		  ADDR_ANY and	IPv6  IN6_IS_ADDR_UNSPECIFIED  addresses,  and
		  zero	port  numbers  are represented by an asterisk ('*'); a
		  UDP destination address may be followed  by  the  amount  of
		  time	elapsed	since the last packet was sent to the destina-
		  tion;	TCP, UDP and UDPLITE remote addresses may be  followed
		  by  TCP/TPI information in parentheses - state (e.g.,	``(ES-
		  TABLISHED)'',	``(Unbound)''),	queue sizes, and window	 sizes
		  (not all dialects) - in a fashion similar to what netstat(1)
		  reports; see the -T option description or the	description of
		  the  TCP/TPI field in	OUTPUT FOR OTHER PROGRAMS for more in-
		  formation on state, queue size, and window size;

		  or the address or name of a UNIX domain socket, possibly in-
		  cluding  a  stream clone device name,	a file system object's
		  path name, local and foreign kernel addresses,  socket  pair
		  information, and a bound vnode address;

		  or the local and remote mount	point names of an NFS file;

		  or ``STR'', followed by the stream name;

		  or  a	 stream	 character device name,	followed by ``->'' and
		  the stream name or a list of stream module names,  separated
		  by ``->'';

		  or ``STR:'' followed by the SCO OpenServer stream device and
		  module names,	separated by ``->'';

		  or system directory name, `` -- '', and as  many  components
		  of the path name as lsof can find in the kernel's name cache
		  for selected dialects	(See the KERNEL	NAME CACHE section for
		  more information.);

		  or ``PIPE->'', followed by a Solaris kernel pipe destination
		  address;

		  or ``COMMON:'', followed by  the  vnode  device  information
		  structure's device name, for a Solaris common	vnode;

		  or  the  address family, followed by a slash (`/'), followed
		  by fourteen comma-separated  bytes  of  a  non-Internet  raw
		  socket address;

		  or  the  HP-UX  x.25	local address, followed	by the virtual
		  connection number (if	any), followed by the  remote  address
		  (if any);

		  or ``(dead)''	for disassociated Tru64	UNIX files - typically
		  terminal files that have been	 flagged  with	the  TIOCNOTTY
		  ioctl	and closed by daemons;

		  or ``rd=<offset>'' and ``wr=<offset>'' for the values	of the
		  read and write offsets of a FIFO;

		  or ``clone n:/dev/event'' for	SCO OpenServer file clones  of
		  the /dev/event device, where n is the	minor device number of
		  the file;

		  or ``(socketpair: n)'' for a Solaris 2.6, 8, 9  or  10  UNIX
		  domain  socket,  created by the socketpair(3N) network func-
		  tion;

		  or ``no PCB''	for socket files that do not have  a  protocol
		  block	 associated  with  them,  optionally  followed	by ``,
		  CANTSENDMORE'' if sending on the socket has  been  disabled,
		  or  ``,  CANTRCVMORE''  if  receiving	on the socket has been
		  disabled (e.g., by the shutdown(2) function);

		  or the local and remote addresses of a Linux IPX socket file
		  in  the  form	<net>:[<node>:]<port>, followed	in parentheses
		  by the transmit and receive queue sizes, and the  connection
		  state;

		  or  ``dgram''	 or ``stream'' for the type UnixWare 7.1.1 and
		  above	in-kernel UNIX domain sockets,	followed  by  a	 colon
		  (':')	 and  the  local path name when	available, followed by
		  ``->'' and the remote	path name or kernel socket address  in
		  hexadecimal when available;

		  or the association value, association	index, endpoint	value,
		  local	address, local port, remote address  and  remote  port
		  for Linux SCTP sockets;

		  or  ``protocol:  ''  followed	by the Linux socket's protocol
		  attribute.

       For dialects that support a ``namefs'' file system, allowing  one  file
       to  be  attached	 to another with fattach(3C), lsof will	add ``(FA:<ad-
       dress1><direction><address2>)'' to the  NAME  column.   <address1>  and
       <address2> are hexadecimal vnode	addresses.  <direction>	will be	``<-''
       if <address2> has been fattach'ed to this vnode whose address  is  <ad-
       dress1>;	and ``->'' if <address1>, the vnode address of this vnode, has
       been fattach'ed to <address2>.  <address1> may be omitted if it already
       appears in the DEVICE column.

       Lsof  may  add  two parenthetical notes to the NAME column for open So-
       laris 10	files: ``(?)'' if lsof considers the path name of questionable
       accuracy;  and  ``(deleted)''  if  the -X option	has been specified and
       lsof detects the	open file's path name has been deleted.	  Consult  the
       lsof FAQ	(The FAQ section gives its location.)  for more	information on
       these NAME column additions.

LOCKS
       Lsof can't adequately report the	wide  variety  of  UNIX	 dialect  file
       locks  in a single character.  What it reports in a single character is
       a compromise between the	information it finds in	 the  kernel  and  the
       limitations of the reporting format.

       Moreover, when a	process	holds several byte level locks on a file, lsof
       only reports the	status of the first lock it encounters.	 If  it	 is  a
       byte level lock,	then the lock character	will be	reported in lower case
       - i.e., `r', `w', or `x'	- rather than the upper	 case  equivalent  re-
       ported for a full file lock.

       Generally  lsof can only	report on locks	held by	local processes	on lo-
       cal files.  When	a local	process	sets a	lock  on  a  remotely  mounted
       (e.g.,  NFS)  file,  the	 remote	 server	 host usually records the lock
       state.  One exception is	Solaris	- at some patch	levels of 2.3, and  in
       all  versions  above 2.4, the Solaris kernel records information	on re-
       mote locks in local structures.

       Lsof has	trouble	reporting locks	for some UNIX dialects.	  Consult  the
       BUGS section of this manual page	or the lsof FAQ	(The FAQ section gives
       its location.)  for more	information.

OUTPUT FOR OTHER PROGRAMS
       When the	-F option is specified,	lsof produces output that is  suitable
       for  processing by another program - e.g, an awk	or Perl	script,	or a C
       program.

       Each unit of information	is output in a field that is identified	with a
       leading character and terminated	by a NL	(012) (or a NUL	(000) if the 0
       (zero) field identifier character is specified.)	 The data of the field
       follows	immediately  after  the	field identification character and ex-
       tends to	the field terminator.

       It is possible to think of field	output as process and  file  sets.   A
       process	set  begins  with a field whose	identifier is `p' (for process
       IDentifier (PID)).  It extends to the beginning of the next  PID	 field
       or  the beginning of the	first file set of the process, whichever comes
       first.  Included	in the process set are fields that identify  the  com-
       mand, the process group IDentification (PGID) number, the task (thread)
       ID (TID), and the user ID (UID) number or login name.

       A file set begins with a	field whose identifier is `f'  (for  file  de-
       scriptor).   It	is  followed  by lines that describe the file's	access
       mode, lock state, type, device, size, offset, inode, protocol, name and
       stream  module  names.  It extends to the beginning of the next file or
       process set, whichever comes first.

       When the	NUL (000) field	terminator has been selected with the 0	(zero)
       field  identifier character, lsof ends each process and file set	with a
       NL (012)	character.

       Lsof always produces one	field, the PID (`p') field.  In	 repeat	 mode,
       the  marker  (`m')  is also produced.  All other	fields may be declared
       optionally in the field identifier character list that follows  the  -F
       option.	 When a	field selection	character identifies an	item lsof does
       not normally list - e.g., PPID, selected	with -R	- specification	of the
       field character - e.g., ``-FR'' - also selects the listing of the item.

       Lsof  version  from  4.88 to 4.93.2 always produced one more field, the
       file descriptor (`f') field. However, lsof in this version doesn't pro-
       duce  it.  This change is for supporting	the use	case that a user needs
       only the	PID field, and doesn't need the	file descriptor	field. Specify
       `f' explicitly if you need the field.

       It is entirely possible to select a set of fields that cannot easily be
       parsed -	e.g., if the field descriptor field is not selected, it	may be
       difficult  to  identify	file sets.  To help you	avoid this difficulty,
       lsof supports the -F option; it selects the output of all  fields  with
       NL  terminators	(the  -F0 option pair selects the output of all	fields
       with NUL	terminators).  For compatibility reasons neither  -F  nor  -F0
       select the raw device field.

       These  are  the	fields	that  lsof will	produce.  The single character
       listed first is the field identifier.

	    a	 file access mode
	    c	 process command name (all characters from proc	or
		 user structure)
	    C	 file structure	share count
	    d	 file's	device character code
	    D	 file's	major/minor device number (0x<hexadecimal>)
	    f	 file descriptor
	    F	 file structure	address	(0x<hexadecimal>)
	    G	 file flaGs (0x<hexadecimal>; names if +fg follows)
	    g	 process group ID
	    i	 file's	inode number
	    K	 tasK ID
	    k	 link count
	    l	 file's	lock status
	    L	 process login name
	    m	 marker	between	repeated output	(always	selected in repeat mode)
	    M	 the task comMand name
	    n	 file name, comment, Internet address
	    N	 node identifier (ox<hexadecimal>
	    o	 file's	offset (0t<decimal> or 0x<hexadecimal>,	see -o o)
	    p	 process ID (always selected)
	    P	 protocol name
	    r	 raw device number (0x<hexadecimal>)
	    R	 parent	process	ID
	    s	 file's	size (decimal)
	    S	 file's	stream identification
	    t	 file's	type
	    T	 TCP/TPI information, identified by prefixes (the
		 `=' is	part of	the prefix):
		     QR=<read queue size>
		     QS=<send queue size>
		     SO=<socket	options	and values> (not all dialects)
		     SS=<socket	states>	(not all dialects)
		     ST=<connection state>
		     TF=<TCP flags and values> (not all	dialects)
		     WR=<window	read size>  (not all dialects)
		     WW=<window	write size>  (not all dialects)
		 (TCP/TPI information isn't reported for all supported
		   UNIX	dialects. The -h or -? help output for the
		   -T option will show what TCP/TPI reporting can be
		   requested.)
	    u	 process user ID
	    z	 Solaris 10 and	higher zone name
	    Z	 SELinux security context (inhibited when SELinux is disabled)
	    0	 use NUL field terminator character in place of	NL
	    1-9	 dialect-specific field	identifiers (The output
		 of -F?	identifies the information to be found
		 in dialect-specific fields.)

       You can get on-line help	information on these characters	and their  de-
       scriptions by specifying	the -F?	 option	pair.  (Escape the `?' charac-
       ter as your shell requires.)  Additional	information on	field  content
       can be found in the OUTPUT section.

       As  an  example,	 ``-F pcfn'' will select the process ID	(`p'), command
       name (`c'), file	descriptor (`f') and file name (`n') fields with an NL
       field terminator	character; ``-F	pcfn0''	selects	the same output	with a
       NUL (000) field terminator character.

       Lsof doesn't produce all	fields for every process  or  file  set,  only
       those that are available.  Some fields are mutually exclusive: file de-
       vice characters and file	major/minor device numbers; file inode	number
       and  protocol  name; file name and stream identification; file size and
       offset.	One or the other member	of these mutually exclusive sets  will
       appear in field output, but not both.

       Normally	 lsof ends each	field with a NL	(012) character.  The 0	(zero)
       field identifier	character may be specified to change the field	termi-
       nator  character	 to  a	NUL  (000).  A NUL terminator may be easier to
       process with xargs (1), for example, or	with  programs	whose  quoting
       mechanisms  may	not  easily  cope  with	the range of characters	in the
       field output.  When the NUL field terminator is in use, lsof ends  each
       process and file	set with a NL (012).

       Three aids to producing programs	that can process lsof field output are
       included	in the lsof distribution.  The	first  is  a  C	 header	 file,
       lsof_fields.h, that contains symbols for	the field identification char-
       acters, indexes for storing them	in a table,  and  explanation  strings
       that may	be compiled into programs.  Lsof uses this header file.

       The  second  aid	 is a set of sample scripts that process field output,
       written in awk, Perl 4, and Perl	5.  They're  located  in  the  scripts
       subdirectory of the lsof	distribution.

       The  third aid is the C library used for	the lsof test suite.  The test
       suite is	written	in C and uses field output to validate the correct op-
       eration of lsof.	 The library can be found in the tests/LTlib.c file of
       the  lsof  distribution.	  The  library	uses  the   first   aid,   the
       lsof_fields.h header file.

BLOCKS AND TIMEOUTS
       Lsof  can  be blocked by	some kernel functions that it uses - lstat(2),
       readlink(2), and	stat(2).  These	functions are stalled in  the  kernel,
       for  example,  when the hosts where mounted NFS file systems reside be-
       come inaccessible.

       Lsof attempts to	break these blocks with	timers	and  child  processes,
       but  the	 techniques are	not wholly reliable.  When lsof	does manage to
       break a block, it will report the break with  an	 error	message.   The
       messages	may be suppressed with the -t and -w options.

       The  default  timeout value may be displayed with the -h	or -?  option,
       and it may be changed with the -S [t] option.  The minimum for t	is two
       seconds,	 but  you should avoid small values, since slow	system respon-
       siveness	can cause short	timeouts to expire  unexpectedly  and  perhaps
       stop lsof before	it can produce any output.

       When lsof has to	break a	block during its access	of mounted file	system
       information, it normally	 continues,  although  with  less  information
       available to display about open files.

       Lsof  can  also be directed to avoid the	protection of timers and child
       processes when using the	kernel functions that might block by  specify-
       ing  the	 -O  option.  While this will allow lsof to start up with less
       overhead, it exposes lsof completely  to	 the  kernel  situations  that
       might block it.	Use this option	cautiously.

AVOIDING KERNEL	BLOCKS
       You  can	use the	-b option to tell lsof to avoid	using kernel functions
       that would block.  Some cautions	apply.

       First, using this option	usually	requires that your system  supply  al-
       ternate	device	numbers	in place of the	device numbers that lsof would
       normally	obtain with the	lstat(2) and stat(2)  kernel  functions.   See
       the  ALTERNATE DEVICE NUMBERS section for more information on alternate
       device numbers.

       Second, you can't specify names for lsof	to locate unless they're  file
       system  names.  This is because lsof needs to know the device and inode
       numbers of files	listed with names in the lsof options, and the -b  op-
       tion  prevents lsof from	obtaining them.	 Moreover, since lsof only has
       device numbers for the file systems that	have alternates,  its  ability
       to  locate files	on file	systems	depends	completely on the availability
       and accuracy of the alternates.	If no alternates are available,	or  if
       they're incorrect, lsof won't be	able to	locate files on	the named file
       systems.

       Third, if the names of your file	system directories that	 lsof  obtains
       from  your  system's mount table	are symbolic links, lsof won't be able
       to resolve the links.  This is because the -b  option  causes  lsof  to
       avoid  the  kernel  readlink(2)	function  it  uses to resolve symbolic
       links.

       Finally,	using the -b option causes lsof	to issue warning messages when
       it  needs  to use the kernel functions that the -b option directs it to
       avoid.  You can suppress	these messages by specifying  the  -w  option,
       but  if	you do,	you won't see the alternate device numbers reported in
       the warning messages.

ALTERNATE DEVICE NUMBERS
       On some dialects, when lsof has to break	a block	because	it  can't  get
       information  about  a  mounted file system via the lstat(2) and stat(2)
       kernel functions, or because you	specified the -b option, lsof can  ob-
       tain  some of the information it	needs -	the device number and possibly
       the file	system type - from the system mount table.  When that is  pos-
       sible,  lsof  will report the device number it obtained.	 (You can sup-
       press the report	by specifying the -w option.)

       You can assist this process if your mount table is  supported  with  an
       /etc/mtab  or /etc/mnttab file that contains an options field by	adding
       a ``dev=xxxx'' field for	mount points that do not have one in their op-
       tions  strings.	 Note:	you must be able to edit the file - i.e., some
       mount tables like recent	Solaris	/etc/mnttab or Linux /proc/mounts  are
       read-only and can't be modified.

       You may also be able to supply device numbers using the +m and +m m op-
       tions, provided they are	supported by your dialect.  Check  the	output
       of  lsof's  -h  or  -?	options	 to see	if the +m and +m m options are
       available.

       The ``xxxx'' portion of the field is the	hexadecimal value of the  file
       system's	device number.	(Consult the st_dev field of the output	of the
       lstat(2)	and stat(2) functions for the appropriate values for your file
       systems.)   Here's  an example from a Sun Solaris 2.6 /etc/mnttab for a
       file system remotely mounted via	NFS:

	    nfs	 ignore,noquota,dev=2a40001

       There's an advantage to having ``dev=xxxx'' entries in your mount table
       file,  especially  for  file  systems  that are mounted from remote NFS
       servers.	 When a	remote server crashes and you  want  to	 identify  its
       users  by  running  lsof	 on one	of its clients,	lsof probably won't be
       able to get output from the lstat(2) and	stat(2)	functions for the file
       system.	 If  it	 can  obtain  the file system's	device number from the
       mount table, it will be able to display the files open on  the  crashed
       NFS server.

       Some  dialects  that  do	not use	an ASCII /etc/mtab or /etc/mnttab file
       for the mount table may still provide an	alternative device  number  in
       their internal mount tables.  This includes AIX,	Apple Darwin, FreeBSD,
       NetBSD, OpenBSD,	and Tru64 UNIX.	 Lsof knows how	to obtain the alterna-
       tive  device  number for	these dialects and uses	it when	its attempt to
       lstat(2)	or stat(2) the file system is blocked.

       If you're not sure your dialect supplies	alternate device  numbers  for
       file  systems from its mount table, use this lsof incantation to	see if
       it reports any alternate	device numbers:

	      lsof -b

       Look for	standard error file warning  messages  that  begin  ``assuming
       "dev=xxxx" from ...''.

KERNEL NAME CACHE
       Lsof is able to examine the kernel's name cache or use other kernel fa-
       cilities	(e.g., the ADVFS 4.x tag_to_path() function under Tru64	 UNIX)
       on some dialects	for most file system types, excluding AFS, and extract
       recently	used path name components from	it.   (AFS  file  system  path
       lookups	don't use the kernel's name cache; some	Solaris	VxFS file sys-
       tem operations apparently don't use it, either.)

       Lsof reports the	complete paths it finds	in the NAME column.   If  lsof
       can't  report  all  components in a path, it reports in the NAME	column
       the file	system name, followed by a space, two `-' characters,  another
       space,  and  the	 name  components it has located, separated by the `/'
       character.

       When lsof is run	in repeat mode - i.e., with the	-r option specified  -
       the  extent  to	which  it can report path name components for the same
       file may	vary from cycle	to cycle.  That's because other	 running  pro-
       cesses  can  cause the kernel to	remove entries from its	name cache and
       replace them with others.

       Lsof's use of the kernel	name cache to identify the paths of files  can
       lead  it	to report incorrect components under some circumstances.  This
       can happen when the kernel name cache uses device and node number as  a
       key  (e.g., SCO OpenServer) and a key on	a rapidly changing file	system
       is reused.  If the UNIX dialect's kernel	doesn't	purge the  name	 cache
       entry  for a file when it is unlinked, lsof may find a reference	to the
       wrong entry in the cache.  The lsof FAQ (The FAQ	section	gives its  lo-
       cation.)	 has more information on this situation.

       Lsof can	report path name components for	these dialects:

	    FreeBSD
	    HP-UX
	    Linux
	    NetBSD
	    NEXTSTEP
	    OpenBSD
	    OPENSTEP
	    SCO	OpenServer
	    SCO|Caldera	UnixWare
	    Solaris
	    Tru64 UNIX

       Lsof can't report path name components for these	dialects:

	    AIX

       If you want to know why lsof can't report path name components for some
       dialects, see the lsof FAQ (The FAQ section gives its location.)

DEVICE CACHE FILE
       Examining all members of	the /dev (or /devices) node tree with  stat(2)
       functions  can  be  time	 consuming.  What's more, the information that
       lsof needs - device number, inode number, and path - rarely changes.

       Consequently, lsof normally maintains an	ASCII text file	of cached /dev
       (or  /devices) information (exception: the /proc-based Linux lsof where
       it's not	needed.)  The local system administrator who builds  lsof  can
       control	the  way  the device cache file	path is	formed,	selecting from
       these options:

	    Path from the -D option;
	    Path from an environment variable;
	    System-wide	path;
	    Personal path (the default);
	    Personal path, modified by an environment variable.

       Consult the output of the -h, -D? , or -?  help options for the current
       state  of  device  cache	 support.   The	 help output lists the default
       read-mode device	cache file path	that is	in effect for the current  in-
       vocation	of lsof.  The -D?  option output lists the read-only and write
       device cache file paths,	the names of any applicable environment	 vari-
       ables, and the personal device cache path format.

       Lsof  can  detect  that the current device cache	file has been acciden-
       tally or	maliciously modified by	integrity checks, including the	compu-
       tation  and verification	of a sixteen bit Cyclic	Redundancy Check (CRC)
       sum on the file's contents.  When lsof senses something wrong with  the
       file, it	issues a warning and attempts to remove	the current cache file
       and create a new	copy, but only to a path that the process can  legiti-
       mately write.

       The  path  from which a lsof process may	attempt	to read	a device cache
       file may	not be the same	as the	path  to  which	 it  can  legitimately
       write.	Thus when lsof senses that it needs to update the device cache
       file, it	may choose a different path for	writing	it from	the path  from
       which it	read an	incorrect or outdated version.

       If  available,  the -Dr option will inhibit the writing of a new	device
       cache file.  (It's always available when	specified without a path  name
       argument.)

       When  a	new  device  is	added to the system, the device	cache file may
       need to be recreated.  Since lsof compares  the	mtime  of  the	device
       cache  file  with  the mtime and	ctime of the /dev (or /devices)	direc-
       tory, it	usually	detects	that a new device has been added; in that case
       lsof  issues a warning message and attempts to rebuild the device cache
       file.

       Whenever	lsof writes a device cache file, it sets its ownership to  the
       real  UID  of  the executing process, and its permission	modes to 0600,
       this restricting	its reading and	writing	to the file's owner.

LSOF PERMISSIONS THAT AFFECT DEVICE CACHE FILE ACCESS
       Two permissions of the lsof executable affect its ability to access de-
       vice cache files.  The permissions are set by the local system adminis-
       trator when lsof	is installed.

       The first and rarer permission is setuid-root.  It  comes  into	effect
       when  lsof  is executed;	its effective UID is then root,	while its real
       (i.e., that of the logged-on user) UID is not.  The  lsof  distribution
       recommends that versions	for these dialects run setuid-root.

	    HP-UX 11.11	and 11.23
	    Linux

       The  second and more common permission is setgid.  It comes into	effect
       when the	effective  group  IDentification  number  (GID)	 of  the  lsof
       process	is  set	 to  one that can access kernel	memory devices - e.g.,
       ``kmem'', ``sys'', or ``system''.

       An lsof process that has	setgid permission usually surrenders the  per-
       mission	after it has accessed the kernel memory	devices.  When it does
       that, lsof can allow more liberal device	cache  path  formations.   The
       lsof  distribution recommends that versions for these dialects run set-
       gid and be allowed to surrender setgid permission.

	    AIX	5.[12] and 5.3-ML1
	    Apple Darwin 7.x Power Macintosh systems
	    FreeBSD 4.x, 4.1x, 5.x and [6789].x	for x86-based systems
	    FreeBSD 5.x, [6789].x and 1[012].8for Alpha, AMD64 and Sparc64
		based systems
	    HP-UX 11.00
	    NetBSD 1.[456], 2.x	and 3.x	for Alpha, x86,	and SPARC-based
		systems
	    NEXTSTEP 3.[13] for	NEXTSTEP architectures
	    OpenBSD 2.[89] and 3.[0-9] for x86-based systems
	    OPENSTEP 4.x
	    SCO	OpenServer Release 5.0.6 for x86-based systems
	    SCO|Caldera	UnixWare 7.1.4 for x86-based systems
	    Solaris 2.6, 8, 9 and 10
	    Tru64 UNIX 5.1

       (Note: lsof for AIX 5L and above	needs setuid-root permission if	its -X
       option is used.)

       Lsof for	these dialects does not	support	a device cache,	so the permis-
       sions given to the executable don't apply to the	device cache file.

	    Linux

DEVICE CACHE FILE PATH FROM THE	-D OPTION
       The -D option provides limited means for	specifying  the	 device	 cache
       file  path.  Its	?  function will report	the read-only and write	device
       cache file paths	that lsof will use.

       When the	-D b, r, and u functions are available,	you can	 use  them  to
       request	that the cache file be built in	a specific location (b[path]);
       read but	not rebuilt (r[path]); or read and rebuilt (u[path]).  The  b,
       r,  and u functions are restricted under	some conditions.  They are re-
       stricted	when the lsof process is setuid-root.  The path	specified with
       the r function is always	read-only, even	when it	is available.

       The  b,	r,  and	 u functions are also restricted when the lsof process
       runs setgid and lsof doesn't surrender the setgid permission.  (See the
       LSOF  PERMISSIONS  THAT	AFFECT	DEVICE CACHE FILE ACCESS section for a
       list of implementations that normally don't surrender their setgid per-
       mission.)

       A further -D function, i	(for ignore), is always	available.

       When  available,	 the  b	function tells lsof to read device information
       from the	kernel with the	stat(2)	function and build a device cache file
       at the indicated	path.

       When  available,	 the  r	 function  tells lsof to read the device cache
       file, but not update it.	 When a	 path  argument	 accompanies  -Dr,  it
       names  the  device cache	file path.  The	r function is always available
       when it is specified without a path name	argument.  If lsof is not run-
       ning  setuid-root and surrenders	its setgid permission, a path name ar-
       gument may accompany the	r function.

       When available, the u function tells lsof to attempt to	read  and  use
       the  device  cache file.	 If it can't read the file, or if it finds the
       contents	of the file incorrect or outdated, it  will  read  information
       from  the kernel, and attempt to	write an updated version of the	device
       cache file, but only to a path it considers  legitimate	for  the  lsof
       process effective and real UIDs.

DEVICE CACHE PATH FROM AN ENVIRONMENT VARIABLE
       Lsof's  second  choice for the device cache file	is the contents	of the
       LSOFDEVCACHE environment	variable.  It avoids this choice if  the  lsof
       process is setuid-root, or the real UID of the process is root.

       A  further  restriction	applies	to a device cache file path taken from
       the LSOFDEVCACHE	environment variable: lsof will	 not  write  a	device
       cache file to the path if the lsof process doesn't surrender its	setgid
       permission.  (See the LSOF PERMISSIONS THAT AFFECT  DEVICE  CACHE  FILE
       ACCESS  section for information on implementations that don't surrender
       their setgid permission.)

       The local system	administrator can disable the use of the  LSOFDEVCACHE
       environment  variable  or  change its name when building	lsof.  Consult
       the output of -D?  for the environment variable's name.

SYSTEM-WIDE DEVICE CACHE PATH
       The local system	administrator may choose to have a system-wide	device
       cache file when building	lsof.  That file will generally	be constructed
       by a special system administration procedure when the system is	booted
       or  when	 the contents of /dev or /devices) changes.  If	defined, it is
       lsof's third device cache file path choice.

       You can tell that a system-wide device cache file is in effect for your
       local installation by examining the lsof	help option output - i.e., the
       output from the -h or -?	 option.

       Lsof will never write to	the system-wide	device cache file path by  de-
       fault.	It must	be explicitly named with a -D function in a root-owned
       procedure.  Once	the file has been written, the procedure  must	change
       its  permission	modes to 0644 (owner-read and owner-write, group-read,
       and other-read).

PERSONAL DEVICE	CACHE PATH (DEFAULT)
       The default device cache	file path of  the  lsof	 distribution  is  one
       recorded	 in  the  home	directory  of the real UID that	executes lsof.
       Added to	the home directory is a	second	path  component	 of  the  form
       .lsof_hostname.

       This is lsof's fourth device cache file path choice, and	is usually the
       default.	 If a system-wide device cache file path was defined when lsof
       was  built, this	fourth choice will be applied when lsof	can't find the
       system-wide device cache	file.  This is the only	 time  lsof  uses  two
       paths when reading the device cache file.

       The  hostname part of the second	component is the base name of the exe-
       cuting host, as returned	by gethostname(2).  The	base name  is  defined
       to  be  the  characters	preceding the first `.'	 in the	gethostname(2)
       output, or all the gethostname(2) output	if it contains no `.'.

       The device cache	file belongs to	 the  user  ID	and  is	 readable  and
       writable	 by  the  user ID alone	- i.e.,	its modes are 0600.  Each dis-
       tinct real user ID on a given host that executes	lsof  has  a  distinct
       device  cache file.  The	hostname part of the path distinguishes	device
       cache files in an NFS-mounted home directory into  which	 device	 cache
       files are written from several different	hosts.

       The  personal device cache file path formed by this method represents a
       device cache file that lsof will	attempt	to read, and will  attempt  to
       write  should  it not exist or should its contents be incorrect or out-
       dated.

       The -Dr option without a	path name argument will	inhibit	the writing of
       a new device cache file.

       The -D?	option will list the format specification for constructing the
       personal	device cache file.  The	conversions used in the	format	speci-
       fication	are described in the 00DCACHE file of the lsof distribution.

MODIFIED PERSONAL DEVICE CACHE PATH
       If  this	 option	is defined by the local	system administrator when lsof
       is built, the LSOFPERSDCPATH environment	variable contents may be  used
       to add a	component of the personal device cache file path.

       The  LSOFPERSDCPATH  variable  contents are inserted in the path	at the
       place marked by the local system	administrator with the ``%p''  conver-
       sion  in	 the HASPERSDC format specification of the dialect's machine.h
       header file.  (It's placed right	after the home directory  in  the  de-
       fault lsof distribution.)

       Thus, for example, if LSOFPERSDCPATH contains ``LSOF'', the home	direc-
       tory is ``/Homes/abe'', the host	name is	``lsof.itap.purdue.edu'',  and
       the  HASPERSDC  format is the default (``%h/%p.lsof_%L''), the modified
       personal	device cache file path is:

	    /Homes/abe/LSOF/.lsof_vic

       The LSOFPERSDCPATH  environment	variable  is  ignored  when  the  lsof
       process is setuid-root or when the real UID of the process is root.

       Lsof  will  not	write to a modified personal device cache file path if
       the lsof	process	doesn't	surrender setgid permission.   (See  the  LSOF
       PERMISSIONS  THAT AFFECT	DEVICE CACHE FILE ACCESS section for a list of
       implementations that normally don't surrender their setgid permission.)

       If, for example,	you want to create a sub-directory of personal	device
       cache  file  paths  by using the	LSOFPERSDCPATH environment variable to
       name it,	and lsof doesn't surrender its	setgid	permission,  you  will
       have  to	 allow	lsof to	create device cache files at the standard per-
       sonal path and move them	to your	subdirectory with shell	commands.

       The local system	administrator may: disable this	option	when  lsof  is
       built;  change the name of the environment variable from	LSOFPERSDCPATH
       to something else; change the HASPERSDC format to include the  personal
       path component in another place;	or exclude the personal	path component
       entirely.  Consult the output of	the -D?	 option	 for  the  environment
       variable's name and the HASPERSDC format	specification.

DIAGNOSTICS
       Errors are identified with messages on the standard error file.

       Lsof returns a one (1) if any error was detected, including the failure
       to locate command names,	file names, Internet addresses or files, login
       names, NFS files, PIDs, PGIDs, or UIDs it was asked to list.  If	the -V
       option is specified, lsof will indicate the search items	it  failed  to
       list.   If the -Q option	is specified, lsof will	ignore any search item
       failures	and only return	an error if something unusual  and  unrecover-
       able happened.

       It  returns  a zero (0) if no errors were detected and if either	the -Q
       option was specified or it was able to list some	information about  all
       the specified search arguments.

       When lsof cannot	open access to /dev (or	/devices) or one of its	subdi-
       rectories, or get information on	a file in them with stat(2), it	issues
       a warning message and continues.	 That lsof will	issue warning messages
       about inaccessible files	in /dev	(or /devices) is indicated in its help
       output -	requested with the -h or >B -?	options	-  with	the message:

	    Inaccessible /dev warnings are enabled.

       The  warning message may	be suppressed with the -w option.  It may also
       have been suppressed by the system administrator	when lsof was compiled
       by the setting of the WARNDEVACCESS definition.	In this	case, the out-
       put from	the help options will include the message:

	    Inaccessible /dev warnings are disabled.

       Inaccessible device warning messages usually disappear after  lsof  has
       created a working device	cache file.

EXAMPLES
       For  a  more  extensive set of examples,	documented more	fully, see the
       00QUICKSTART file of the	lsof distribution.

       To list all open	files, use:

	      lsof

       To list all open	Internet, x.25 (HP-UX),	and UNIX domain	files, use:

	      lsof -i -U

       To list all open	IPv4 network files in use by the process whose PID  is
       1234, use:

	      lsof -i 4	-a -p 1234

       If it's okay for	PID 1234 to not	exist, or for PID 1234 to not have any
       open IPv4 network files,	add -Q :

	      lsof -Q -i 4 -a -p 1234

       Presuming the UNIX dialect supports IPv6, to list only open  IPv6  net-
       work files, use:

	      lsof -i 6

       To  list	all files using	any protocol on	ports 513, 514,	or 515 of host
       wonderland.cc.purdue.edu, use:

	      lsof -i @wonderland.cc.purdue.edu:513-515

       To list all files using any protocol on any port	of  mace.cc.purdue.edu
       (cc.purdue.edu is the default domain), use:

	      lsof -i @mace

       To  list	 all  open  files  for login name ``abe'', or user ID 1234, or
       process 456, or process 123, or process 789, use:

	      lsof -p 456,123,789 -u 1234,abe

       To list all open	files on device	/dev/hd4, use:

	      lsof /dev/hd4

       To find the process that	has /u/abe/foo open without worrying if	 there
       are none, use:

	      lsof -Q /u/abe/foo

       To take action only if a	process	has /u/abe/foo open, use:

	      lsof /u/abe/foo  echo "still in use"

       To send a SIGHUP	to the processes that have /u/abe/bar open, use:

	      kill -HUP	`lsof -t /u/abe/bar`

       To  find	any open file, including an open UNIX domain socket file, with
       the name	/dev/log, use:

	      lsof /dev/log

       To find processes  with	open  files  on	 the  NFS  file	 system	 named
       /nfs/mount/point	whose server is	inaccessible, and presuming your mount
       table supplies the device number	for /nfs/mount/point, use:

	      lsof -b /nfs/mount/point

       To do the preceding search with warning messages	suppressed, use:

	      lsof -bw /nfs/mount/point

       To ignore the device cache file,	use:

	      lsof -Di

       To obtain PID and command name field output for each process, file  de-
       scriptor,  file	device	number,	and file inode number for each file of
       each process, use:

	      lsof -FpcfDi

       To list the files at descriptors	1 and 3	of every process  running  the
       lsof command for	login ID ``abe'' every 10 seconds, use:

	      lsof -c lsof -a -d 1 -d 3	-u abe -r10

       To  list	 the  current working directory	of processes running a command
       that is exactly four characters long and	has an 'o' or 'O' in character
       three, use this regular expression form of the -c c option:

	      lsof -c /^..o.$/i	-a -d cwd

       To  find	an IP version 4	socket file by its associated numeric dot-form
       address,	use:

	      lsof -i@128.210.15.17

       To find an IP version 6 socket file (when  the  UNIX  dialect  supports
       IPv6) by	its associated numeric colon-form address, use:

	      lsof -i@[0:1:2:3:4:5:6:7]

       To  find	 an  IP	 version 6 socket file (when the UNIX dialect supports
       IPv6) by	an associated numeric colon-form address that has a run	of ze-
       roes in it - e.g., the loop-back	address	- use:

	      lsof -i@[::1]

       To  obtain  a  repeat  mode marker line that contains the current time,
       use:

	      lsof -rm====%T====

       To add spaces to	the previous marker line, use:

	      lsof -r "m==== %T	===="

BUGS
       Since lsof reads	kernel memory in its  search  for  open	 files,	 rapid
       changes in kernel memory	may produce unpredictable results.

       When  a file has	multiple record	locks, the lock	status character (fol-
       lowing the file descriptor) is derived from a test of  the  first  lock
       structure, not from any combination of the individual record locks that
       might be	described by multiple lock structures.

       Lsof can't search for files with	restrictive access permissions by name
       unless  it  is installed	with root set-UID permission.  Otherwise it is
       limited to searching for	files to which its user	or its	set-GID	 group
       (if any)	has access permission.

       The display of the destination address of a raw socket (e.g., for ping)
       depends on the UNIX operating system.  Some dialects store the destina-
       tion address in the raw socket's	protocol control block,	some do	not.

       Lsof can't always represent Solaris device numbers in the same way that
       ls(1) does.  For	example, the major and minor device numbers  that  the
       lstat(2)	and stat(2) functions report for the directory on which	CD-ROM
       files are mounted (typically /cdrom) are	not the	same as	the ones  that
       it  reports for the device on which CD-ROM files	are mounted (typically
       /dev/sr0).  (Lsof reports the directory numbers.)

       The support for /proc file systems is available only for	BSD and	 Tru64
       UNIX  dialects,	Linux, and dialects derived from SYSV R4 - e.g., Free-
       BSD, NetBSD, OpenBSD, Solaris, UnixWare.

       Some /proc file items - device number, inode number, and	 file  size  -
       are  unavailable	in some	dialects.  Searching for files in a /proc file
       system may require that the full	path name be specified.

       No text (txt) file descriptors are displayed for	Linux processes.   All
       entries	for  files  other than the current working directory, the root
       directory, and numerical	file descriptors are labeled mem descriptors.

       Lsof can't search for Tru64 UNIX	named pipes  by	 name,	because	 their
       kernel implementation of	lstat(2) returns an improper device number for
       a named pipe.

       Lsof can't report fully or correctly on HP-UX 9.01,  10.20,  and	 11.00
       locks  because  of  insufficient	access to kernel data or errors	in the
       kernel data.  See the lsof FAQ (The FAQ section	gives  its  location.)
       for details.

       The  AIX	 SMT file type is a fabrication.  It's made up for file	struc-
       tures whose type	(15) isn't defined in the AIX  /usr/include/sys/file.h
       header  file.   One  way	 to  create  such  file	structures is to run X
       clients with the	DISPLAY	variable set to	``:0.0''.

       The +|-f[cfn] option is not supported under /proc-based Linux lsof, be-
       cause it	doesn't	read kernel structures from kernel memory.

ENVIRONMENT
       Lsof may	access these environment variables.

       LANG		 defines  a language locale.  See setlocale(3) for the
			 names of other	variables that can be used in place of
			 LANG -	e.g., LC_ALL, LC_TYPE, etc.

       LSOFDEVCACHE	 defines the path to a device cache file.  See the DE-
			 VICE CACHE PATH FROM AN ENVIRONMENT VARIABLE  section
			 for more information.

       LSOFPERSDCPATH	 defines  the  middle component	of a modified personal
			 device	cache file path.  See  the  MODIFIED  PERSONAL
			 DEVICE	CACHE PATH section for more information.

FAQ
       Frequently-asked	 questions and their answers (an FAQ) are available in
       the 00FAQ file of the lsof distribution.

       That latest version of the file is found	at:

	      https://github.com/lsof-org/lsof/blob/master/00FAQ

FILES
       /dev/kmem	 kernel	virtual	memory device

       /dev/mem		 physical memory device

       /dev/swap	 system	paging device

       .lsof_hostname	 lsof's	device cache file (The	suffix,	 hostname,  is
			 the  first  component	of the host's name returned by
			 gethostname(2).)

AUTHORS
       Lsof was	written	by Victor A.Abell <abe@purdue.edu> of  Purdue  Univer-
       sity.   Since  version  4.93.0,	the  lsof-org team at GitHub maintains
       lsof.  Many others have contributed to lsof.   They're  listed  in  the
       00CREDITS file of the lsof distribution.

DISTRIBUTION
       The latest distribution of lsof is available at

	      https://github.com/lsof-org/lsof/releases

SEE ALSO
       Not  all	 the following manual pages may	exist in every UNIX dialect to
       which lsof has been ported.

       access(2), awk(1), crash(1), fattach(3C),  ff(1),  fstat(8),  fuser(1),
       gethostname(2),	 isprint(3),  kill(1),	localtime(3),  lstat(2),  mod-
       load(8),	mount(8), netstat(1),  ofiles(8L),  open(2),  perl(1),	ps(1),
       readlink(2), setlocale(3), stat(2), strftime(3),	time(2), uname(1).

				Revision-4.96.5			       LSOF(8)

NAME | SYNOPSIS | DESCRIPTION | OPTIONS | AFS | SECURITY | OUTPUT | LOCKS | OUTPUT FOR OTHER PROGRAMS | BLOCKS AND TIMEOUTS | AVOIDING KERNEL BLOCKS | ALTERNATE DEVICE NUMBERS | KERNEL NAME CACHE | DEVICE CACHE FILE | LSOF PERMISSIONS THAT AFFECT DEVICE CACHE FILE ACCESS | DEVICE CACHE FILE PATH FROM THE -D OPTION | DEVICE CACHE PATH FROM AN ENVIRONMENT VARIABLE | SYSTEM-WIDE DEVICE CACHE PATH | PERSONAL DEVICE CACHE PATH (DEFAULT) | MODIFIED PERSONAL DEVICE CACHE PATH | DIAGNOSTICS | EXAMPLES | BUGS | ENVIRONMENT | FAQ | FILES | AUTHORS | DISTRIBUTION | SEE ALSO

Want to link to this manual page? Use this URL:
<https://man.freebsd.org/cgi/man.cgi?query=lsof&manpath=FreeBSD+13.2-RELEASE+and+Ports>

home | help